scholarly journals The Agnostic Structure of Data Science Methods

2021 ◽  
Vol 8 (2) ◽  
pp. 44-57
Author(s):  
Domenico Napoletani ◽  
Marco Panza ◽  
Daniele Struppa

In this paper we argue that data science is a coherent and novel approach to empirical problems that, in its most general form, does not build understanding about phenomena. Within the new type of mathematization at work in data science, mathematical methods are not selected because of any relevance for a problem at hand; mathematical methods are applied to a specific problem only by `forcing’, i.e. on the basis of their ability to reorganize the data for further analysis and the intrinsic richness of their mathematical structure. In particular, we argue that deep learning neural networks are best understood within the context of forcing optimization methods. We finally explore the broader question of the appropriateness of data science methods in solving problems. We argue that this question should not be interpreted as a search for a correspondence between phenomena and specific solutions found by data science methods; rather, it is the internal structure of data science methods that is open to precise forms of understanding.

2020 ◽  
Author(s):  
Saeed Nosratabadi ◽  
Amir Mosavi ◽  
Puhong Duan ◽  
Pedram Ghamisi ◽  
Ferdinand Filip ◽  
...  

This paper provides a state-of-the-art investigation of advances in data science in emerging economic applications. The analysis was performed on novel data science methods in four individual classes of deep learning models, hybrid deep learning models, hybrid machine learning, and ensemble models. Application domains include a wide and diverse range of economics research from the stock market, marketing, and e-commerce to corporate banking and cryptocurrency. Prisma method, a systematic literature review methodology, was used to ensure the quality of the survey. The findings reveal that the trends follow the advancement of hybrid models, which, based on the accuracy metric, outperform other learning algorithms. It is further expected that the trends will converge toward the advancements of sophisticated hybrid deep learning models.


2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Gabriele Valvano ◽  
Gianmarco Santini ◽  
Nicola Martini ◽  
Andrea Ripoli ◽  
Chiara Iacconi ◽  
...  

Cluster of microcalcifications can be an early sign of breast cancer. In this paper, we propose a novel approach based on convolutional neural networks for the detection and segmentation of microcalcification clusters. In this work, we used 283 mammograms to train and validate our model, obtaining an accuracy of 99.99% on microcalcification detection and a false positive rate of 0.005%. Our results show how deep learning could be an effective tool to effectively support radiologists during mammograms examination.


Author(s):  
Mohammed Abdulla Salim Al Husaini ◽  
Mohamed Hadi Habaebi ◽  
Teddy Surya Gunawan ◽  
Md Rafiqul Islam ◽  
Elfatih A. A. Elsheikh ◽  
...  

AbstractBreast cancer is one of the most significant causes of death for women around the world. Breast thermography supported by deep convolutional neural networks is expected to contribute significantly to early detection and facilitate treatment at an early stage. The goal of this study is to investigate the behavior of different recent deep learning methods for identifying breast disorders. To evaluate our proposal, we built classifiers based on deep convolutional neural networks modelling inception V3, inception V4, and a modified version of the latter called inception MV4. MV4 was introduced to maintain the computational cost across all layers by making the resultant number of features and the number of pixel positions equal. DMR database was used for these deep learning models in classifying thermal images of healthy and sick patients. A set of epochs 3–30 were used in conjunction with learning rates 1 × 10–3, 1 × 10–4 and 1 × 10–5, Minibatch 10 and different optimization methods. The training results showed that inception V4 and MV4 with color images, a learning rate of 1 × 10–4, and SGDM optimization method, reached very high accuracy, verified through several experimental repetitions. With grayscale images, inception V3 outperforms V4 and MV4 by a considerable accuracy margin, for any optimization methods. In fact, the inception V3 (grayscale) performance is almost comparable to inception V4 and MV4 (color) performance but only after 20–30 epochs. inception MV4 achieved 7% faster classification response time compared to V4. The use of MV4 model is found to contribute to saving energy consumed and fluidity in arithmetic operations for the graphic processor. The results also indicate that increasing the number of layers may not necessarily be useful in improving the performance.


2020 ◽  
Author(s):  
Saeed Nosratabadi ◽  
Amir Mosavi ◽  
Puhong Duan ◽  
Pedram Ghamisi ◽  
Ferdinand Filip ◽  
...  

This paper provides a state-of-the-art investigation of advances in data science in emerging economic applications. The analysis was performed on novel data science methods in four individual classes of deep learning models, hybrid deep learning models, hybrid machine learning, and ensemble models. Application domains include a wide and diverse range of economics research from the stock market, marketing, and e-commerce to corporate banking and cryptocurrency. Prisma method, a systematic literature review methodology, was used to ensure the quality of the survey. The findings reveal that the trends follow the advancement of hybrid models, which, based on the accuracy metric, outperform other learning algorithms. It is further expected that the trends will converge toward the advancements of sophisticated hybrid deep learning models.


2020 ◽  
Vol 14 (2) ◽  
pp. 565-584 ◽  
Author(s):  
Jordi Bolibar ◽  
Antoine Rabatel ◽  
Isabelle Gouttevin ◽  
Clovis Galiez ◽  
Thomas Condom ◽  
...  

Abstract. We present a novel approach to simulate and reconstruct annual glacier-wide surface mass balance (SMB) series based on a deep artificial neural network (ANN; i.e. deep learning). This method has been included as the SMB component of an open-source regional glacier evolution model. While most glacier models tend to incorporate more and more physical processes, here we take an alternative approach by creating a parameterized model based on data science. Annual glacier-wide SMBs can be simulated from topo-climatic predictors using either deep learning or Lasso (least absolute shrinkage and selection operator; regularized multilinear regression), whereas the glacier geometry is updated using a glacier-specific parameterization. We compare and cross-validate our nonlinear deep learning SMB model against other standard linear statistical methods on a dataset of 32 French Alpine glaciers. Deep learning is found to outperform linear methods, with improved explained variance (up to +64 % in space and +108 % in time) and accuracy (up to +47 % in space and +58 % in time), resulting in an estimated r2 of 0.77 and a root-mean-square error (RMSE) of 0.51 m w.e. Substantial nonlinear structures are captured by deep learning, with around 35 % of nonlinear behaviour in the temporal dimension. For the glacier geometry evolution, the main uncertainties come from the ice thickness data used to initialize the model. These results should encourage the use of deep learning in glacier modelling as a powerful nonlinear tool, capable of capturing the nonlinearities of the climate and glacier systems, that can serve to reconstruct or simulate SMB time series for individual glaciers in a whole region for past and future climates.


2020 ◽  
Author(s):  
Ishanu Chattopadhyay ◽  
Yi Huang ◽  
James Evans

Abstract Complex phenomena of societal interest such as weather, seismic activity and urban crime, are often punctuated by rare and extreme events, which are difficult to model and predict. Evidence of long-range persistence of such events has underscored the need to learn deep stochastic structures in data for effective forecasts. Recently neural networks (NN) have emerged as a defacto standard for deep learning. However, key problems remain with NN inference, including a high sample complexity, a general lack of transparency, and a limited ability to directly model stochastic phenomena. In this study we suggest that deep learning and the NN paradigm are conceptually distinct -- and that it is possible to learn ``deep' associations without invoking the ubiquitous NN strategy of global optimization via back-propagation. We show that deep learning of stochastic phenomena is related to uncovering the emergent self-similarities in data, which avoids the NN pitfalls offering crucial insights into underlying mechanisms. Using the Fractal Net (FN) architecture introduced here, we actionably forecast various categories of rare weather and seismic events, and property and violent crimes in major US cities. Compared to carefully tuned NNs, we boost recall at 90% precision by 161.9% for extreme weather events, 191.3% for light-to-severe seismic events with magnitudes above the local third quartile, and 50.8% - 404.9% for urban crime, demonstrating applicability in diverse systems of societal interest. This study opens the door to precise prediction of rare events in spatio-temporal phenomena, adding a new tool to the data science revolution.


2020 ◽  
Author(s):  
Saeed Nosratabadi ◽  
Amir Mosavi ◽  
Puhong Duan ◽  
Pedram Ghamisi ◽  
Ferdinand Filip ◽  
...  

This paper provides a state-of-the-art investigation of advances in data science in emerging economic applications. The analysis was performed on novel data science methods in four individual classes of deep learning models, hybrid deep learning models, hybrid machine learning, and ensemble models. Application domains include a wide and diverse range of economics research from the stock market, marketing, and e-commerce to corporate banking and cryptocurrency. Prisma method, a systematic literature review methodology, was used to ensure the quality of the survey. The findings reveal that the trends follow the advancement of hybrid models, which, based on the accuracy metric, outperform other learning algorithms. It is further expected that the trends will converge toward the advancements of sophisticated hybrid deep learning models.


2019 ◽  
Vol 69 (1) ◽  
pp. 20-26 ◽  
Author(s):  
Victor S. Abrukov ◽  
Alexander N. Lukin ◽  
Darya A. Anufrieva ◽  
Charlie Oommen ◽  
V. R. Sanalkumar ◽  
...  

The efforts of Russian-Indian research team for application of the data science methods, in particular, artificial neural networks for development of the multi-factor computational models for studying effects of additive’s properties on the solid rocket propellants combustion are presented. The possibilities of the artificial neural networks (ANN) application in the generalisation of the connections between the variables of combustion experiments as well as in forecasting of “new experimental results” are demonstrated. The effect of particle size of catalyst, oxidizer surface area and kinetic parameters like activation energy and heat release on the final ballistic property of AP-HTPB based propellant composition has been modelled using ANN methods. The validated ANN models can predict many unexplored regimes, like pressures, particle sizes of oxidiser, for which experimental data are not available. Some of the regularly measured kinetic parameters extracted from non-combustion conditions could be related to properties at combustion conditions. Results predicted are within desirable limits accepted in combustion conditions.


Author(s):  
Prakash Kanade ◽  
Fortune David ◽  
Sunay Kanade

To avoid the rising number of car crash deaths, which are mostly caused by drivers' inattentiveness, a paradigm shift is expected. The knowledge of a driver's look area may provide useful details about his or her point of attention. Cars with accurate and low-cost gaze classification systems can increase driver safety. When drivers shift their eyes without turning their heads to look at objects, the margin of error in gaze detection increases. For new consumer electronic applications such as driver tracking systems and novel user interfaces, accurate and effective eye gaze prediction is critical. Such systems must be able to run efficiently in difficult, unconstrained conditions while using reduced power and expense. A deep learning-based gaze estimation technique has been considered to solve this issue, with an emphasis on WSN based Convolutional Neural Networks (CNN) based system. The proposed study proposes the following architecture, which is focused on data science: The first is a novel neural network model that is programmed to manipulate any possible visual feature, such as the states of both eyes and head location, as well as many augmentations; the second is a data fusion approach that incorporates several gaze datasets. However, due to different factors such as environment light shifts, reflections on glasses surface, and motion and optical blurring of the captured eye signal, the accuracy of detecting and classifying the pupil centre and corneal reflection centre depends on a car environment. This work also includes pre-trained models, network structures, and datasets for designing and developing CNN-based deep learning models for Eye-Gaze Tracking and Classification.


Sign in / Sign up

Export Citation Format

Share Document