scholarly journals Infrared and Raman spectra of cubic form of magnesium caesium arsenate hexahydrate

Author(s):  
Viktor Stefov ◽  
Violeta Koleva ◽  
Metodija Najdoski ◽  
Adnan Cahil ◽  
Zuldjevat Abdija

Fourier transform infrared (FT-IR) spectra recorded at room temperature (RT) and at the boiling temperature of liquid nitrogen (LNT), as well as Raman spectra recorded at room temperature for the cubic polymorph of magnesium cesium arsenate hexahydrate (MgCsAsO4·6H2O) and its partially deuterated analogues, were interpreted with respect to the normal modes of the water molecules and the arsenate ions and water librations. The spectral characteristics of MgCsAsO4·6H2O were compared to the cubic form of the phosphate analogue. A spectral similarity between the two isostructural salts was established, except for the obvious differences due to the nature of the anions (AsO43– vs PO43–). The spectroscopic data for the uncoupled OD stretching mode of the matrix-isolated HDO molecules revealed that the hydrogen bonds formed in the arsenate salt were stronger than those in the phosphate. In the Raman spectrum of the protiated compound, only one very intensive band at 811 cm–1 was observed in the region of the stretching vibrations of the AsO43– ion, which was insensitive to deuteration. In accordance with the expectation, one band appeared in the same spectral range in the infrared spectra of the protiated and highly deuterated sample at 792 cm–1 and 810 cm–1, respectively, which can be attributed with certainty to the asymmetric stretching ν3(AsO4) modes.

Author(s):  
Gligor Jovanovski ◽  
Adnan Kahil ◽  
Orhideja Grupče

A b s t r a c t: The Fourier transform (FT) infrared spectra of thiosaccharinates of cadmium and lead in the 4000–400 cm–1 region were studied. Although the observed resemblance between the spectra recorded in KBr pellets suggests a possible similarity between their structures as well, the powder X-ray diagrams show that these two compounds are not isomorphous. The presence of broad and intense bands in the region of the HOH stretchings shows that thiosaccharinate of cadmium is a crystalline hydrate and the spectral picture in the region of the O-D stretchings of the isotopically isolated HOD molecules in the partially deuterated analogue indicates that present in its structure are at least two types of crystallographically different water molecules involved in the formation of weak hydrogen bonds. The room temperature (RT) spectrum of lead thiosaccharinate in the region of the ν(HOH) modes differs significantly from the spectrum recorded at the boiling temperature of liquid nitrogen (LNT), which may perhaps be interpreted as an indication that a phase transition is taking place on lowering the temperature. The spectrum of lead thiosaccharinate was recorded in a Nujol mull as well. While the KBr and Nujol spectra are essentially identical in the region below 1600 cm–1, no bands are observed in the HOH stretching region of the mull spectra. In fact, it was shown that the appearance of the spectra of lead thiosaccharinates depends on the emulsion preparation rate. A comparison of the spectral characteristics of the thiosaccharinates of cadmium and lead with those of the corresponding saccharinates (their crystal structures are known) was made, special attention being paid to the analysis of the SO2 stretching region in the saccharinate and thiosaccharinate compounds.


1973 ◽  
Vol 27 (3) ◽  
pp. 209-213 ◽  
Author(s):  
John F. Jackovitz ◽  
Charles E. Falletta ◽  
James C. Carter

Infrared and Raman spectra for (K+) (CF3BF3−) have been obtained from 4000 to 50 cm−1. Spectral assignments were made on the basis of C3v symmetry using both 10B and 11B compounds. In addition, a normal coordinate analysis was performed to obtain the potential energy distribution of the normal modes. A Urey-Bradley type force field was used, and force constants obtained for the CF3 and BF3 groupings were compared to those in C2F6 and BF4−.


1992 ◽  
Vol 291 ◽  
Author(s):  
Charles C. Kim ◽  
M. I. Bell ◽  
D. A. McKeown

ABSTRACTThe normal modes of vibration and their frequencies are calculated for benitoite, a mineral whose crystal structure (space group D23h) consists of three-membered silicate rings (Si3O9) linked by Ba+2 and Ti+4 ions. The calculation unambiguously assigns the normal modes to the lines in the Raman and infrared spectra and determines the atomic interactions. On the assumption that mode mixings and splittings due to inter-ring interactions are small, the normal frequencies of the isolated ring of C3h, symmetry are determined. The identification of normal modes characteristic of three-membered silicate rings may prove to be a valuable guide in the interpretation of the infrared and Raman spectra of amorphous silicates, potentially leading to new information on the ring statistics of these materials.


1973 ◽  
Vol 51 (3) ◽  
pp. 402-404 ◽  
Author(s):  
A. Bree ◽  
R. A. Kydd ◽  
V. V. B. Vilkos ◽  
R. S. Williams

A study of the polarized infrared and Raman spectra of acenaphthylene single crystals has been made. These results, together with Gordon and Yang's preliminary X-ray work, suggest that the molecules pack in some disordered arrangement in the solid at room temperature. Most of the A1 fundamentals were identified in the Raman solution spectrum from their low depolarization ratio, and a few tentative assignments of nontotally symmetric fundamentals were made.


1961 ◽  
Vol 39 (11) ◽  
pp. 2171-2178 ◽  
Author(s):  
R. J. Gillespie ◽  
E. A. Robinson

New assignments are proposed for the fundamental frequencies of SOF2, SOCl2, SO2Cl2, SO2F2, and SO2FBr, based on new measurements of the Raman spectrum of SO2Cl2 and previous measurements of the infrared and Raman spectra of these molecules. The fundamental frequencies of these molecules are found to be related to each other and to those of similar molecules when the normal modes are described in terms of characteristic vibrations of the SO, SO2, S(Hal), and S(Hal)2 groups.


2017 ◽  
Vol 71 (10) ◽  
pp. 2278-2285 ◽  
Author(s):  
Valentina Crocellà ◽  
Elena Groppo ◽  
Alessandro Dani ◽  
Alberto Castellero ◽  
Silvia Bordiga ◽  
...  

The functional properties of a new composite material having water vapor getter properties have been investigated by a large arsenal of characterization techniques. The composite system is originated by combining two constituents having very different chemical natures, a magnesium perchlorate (Mg(ClO4)2) salt and a polymeric acrylic matrix. In particular, Fourier transform infrared (FT-IR) and Raman spectroscopy have been fundamental to understand the type of interactions between the salt and the matrix in different hydration conditions. It was found that in the anhydrous composite system the dispersed Mg(ClO4)2 salt retains its molecular structure, because Mg2+ cations are still surrounded by their [ClO4]– counter-anions; at the same time, the salt and the polymeric matrix chemically interact each other at the molecular level. These interactions gradually vanish in the presence of water, and disappear in the fully hydrated composite system, where the Mg2+ cations are completely solvated by the water molecules.


1979 ◽  
Vol 33 (4) ◽  
pp. 361-364 ◽  
Author(s):  
V. F. Kalasinsky ◽  
E. Block ◽  
D. E. Powers ◽  
W. C. Harris

The infrared and Raman spectra of 1,3-dithietane have been recorded with the sample in the solid state and trapped in an argon matrix at 18K. The number of coincidences between the infrared and Raman spectra of the matrix-isolated sample is consistent with C2v molecular symmetry in which the ring has a puckered conformation. In the solid state a number of bands disappear upon annealing, and the observed mutual exclusion for the annealed solid can be interpreted in terms of D2h, symmetry. Whereas the matrix probably represents the “free” molecule, the planarity of the ring in the annealed solid can be attributed to crystal packing.


2003 ◽  
Vol 2003 (8) ◽  
pp. 518-521 ◽  
Author(s):  
M.K. Marchewka

Room temperature powder infrared and Raman measurements for the new melaminium salt, bis(2,4,6-triamino-1,3,5-triazin-1-ium) sulfate dihydrate, 2C3H7N6+·SO42-·2H2O, in the crystalline state, were carried out. The vibrational spectra in the region of internal vibrations of the ions corroborate recent X-ray data of Janczak et al. Some spectral features of this new crystal are referred to those of other crystalline melaminium salts.


Sign in / Sign up

Export Citation Format

Share Document