scholarly journals INFRARED SPECTRA OF THIOSACCHARINATES OF CADMIUM AND LEAD COMPARISON WITH THE ANALOGOUS METAL SACCHARINATES

Author(s):  
Gligor Jovanovski ◽  
Adnan Kahil ◽  
Orhideja Grupče

A b s t r a c t: The Fourier transform (FT) infrared spectra of thiosaccharinates of cadmium and lead in the 4000–400 cm–1 region were studied. Although the observed resemblance between the spectra recorded in KBr pellets suggests a possible similarity between their structures as well, the powder X-ray diagrams show that these two compounds are not isomorphous. The presence of broad and intense bands in the region of the HOH stretchings shows that thiosaccharinate of cadmium is a crystalline hydrate and the spectral picture in the region of the O-D stretchings of the isotopically isolated HOD molecules in the partially deuterated analogue indicates that present in its structure are at least two types of crystallographically different water molecules involved in the formation of weak hydrogen bonds. The room temperature (RT) spectrum of lead thiosaccharinate in the region of the ν(HOH) modes differs significantly from the spectrum recorded at the boiling temperature of liquid nitrogen (LNT), which may perhaps be interpreted as an indication that a phase transition is taking place on lowering the temperature. The spectrum of lead thiosaccharinate was recorded in a Nujol mull as well. While the KBr and Nujol spectra are essentially identical in the region below 1600 cm–1, no bands are observed in the HOH stretching region of the mull spectra. In fact, it was shown that the appearance of the spectra of lead thiosaccharinates depends on the emulsion preparation rate. A comparison of the spectral characteristics of the thiosaccharinates of cadmium and lead with those of the corresponding saccharinates (their crystal structures are known) was made, special attention being paid to the analysis of the SO2 stretching region in the saccharinate and thiosaccharinate compounds.

2005 ◽  
Vol 60 (11) ◽  
pp. 1149-1157 ◽  
Author(s):  
Matthias Siebold ◽  
Alexandra Kelling ◽  
Uwe Schilde ◽  
Peter Strauch

Planar bis(1,2-dithiooxalato)nickelates(II) react in aqueous solutions of lanthanide ions to form pentanuclear, heterobimetallic complexes of the general composition [{Ln(H2O)n}2- {Ni(dto)2}3]・xH2O (Ln = Y3+, La3+, Ce3+, Pr3+, Nd3+, Sm3+, Eu3+, Gd3+, Tb3+, Dy3+, Ho3+, Er3+, Tm3+, Yb3+, Lu3+; n = 4 or 5; x = 9 - 12). With [{Nd(H2O)5}2{Ni(S2C2O2)2}3]・xH2O (x = 10 - 12) (1) and [{Er(H2O)4}2{Ni(S2C2O2)2}3]・xH2O (x = 9 - 10) (2) we were able to isolate two complexes of this series as single crystals, which were characterized by X-ray structure analysis. Depending on the individual ionic radii of the lanthanide ions, the compounds crystallize in two different crystal systems with the following unit cell parameters: 1, monoclinic in P21/c with a = 11.3987(13), b = 11.4878(8), c = 20.823(2) Å , β = 98.907(9)° and Z = 2; 2, triclinic in P1̅ with a = 10.5091(6), b = 11.0604(6), c = 11.2823(6) Å , α = 107.899(4)°, β = 91.436(4)°, γ = 112.918(4)° and Z = 1. The channels and cavities appearing in the packing of the molecules are occupied by uncoordinated water molecules. High magnetic moments up to 14.65 BM./f.u. have been observed at room temperature due to the combined moments of the individual lanthanide ions.


IUCrJ ◽  
2016 ◽  
Vol 3 (2) ◽  
pp. 115-126 ◽  
Author(s):  
E. I. Howard ◽  
B. Guillot ◽  
M. P. Blakeley ◽  
M. Haertlein ◽  
M. Moulin ◽  
...  

Crystal diffraction data of heart fatty acid binding protein (H-FABP) in complex with oleic acid were measured at room temperature with high-resolution X-ray and neutron protein crystallography (0.98 and 1.90 Å resolution, respectively). These data provided very detailed information about the cluster of water molecules and the bound oleic acid in the H-FABP large internal cavity. The jointly refined X-ray/neutron structure of H-FABP was complemented by a transferred multipolar electron-density distribution using the parameters of the ELMAMII library. The resulting electron density allowed a precise determination of the electrostatic potential in the fatty acid (FA) binding pocket. Bader's quantum theory of atoms in molecules was then used to study interactions involving the internal water molecules, the FA and the protein. This approach showed H...H contacts of the FA with highly conserved hydrophobic residues known to play a role in the stabilization of long-chain FAs in the binding cavity. The determination of water hydrogen (deuterium) positions allowed the analysis of the orientation and electrostatic properties of the water molecules in the very ordered cluster. As a result, a significant alignment of the permanent dipoles of the water molecules with the protein electrostatic field was observed. This can be related to the dielectric properties of hydration layers around proteins, where the shielding of electrostatic interactions depends directly on the rotational degrees of freedom of the water molecules in the interface.


1998 ◽  
Vol 51 (8) ◽  
pp. 761 ◽  
Author(s):  
Jack M. Harrowfield ◽  
Raj Pal Sharma ◽  
Brian W. Skelton ◽  
Allan H. White

Room-temperature single-crystal X-ray studies are recorded for 2-nitrophenoxide salts of Group 2 metals, variously hydrated M(2-np)2.xH2O, M = Mg, Ca, Sr; the structure of the barium analogue has been previously recorded. Mg(2-np)2.2H2O is monoclinic, P21/a, a 7·377(1), b 7·518(1), c 12·877(3) Å, β 106·58(2)°, Z = 2; conventional R on |F| 0·13 for No 508 independent ‘observed’ (I > 3σ(I)) reflections. Ca(2-np)2.H2O is monoclinic, C2, a 25·92(1), b 7·176(3), c 3·660(4) Å, β 93·66(5)°, Z = 2, R 0·061 for No 541. M(2-np)2.4H2O, M = Ca, Sr, are isomorphous, monoclinic, C2/c, a ≈ 31·3, b ≈ 8·1, c ≈ 12·8 Å, β 103°, Z = 8; R was 0·056, 0·055 forNo 1988, 1744 respectively. The magnesium salt is a discrete molecular array disposed about a crystallographic inversion centre with chelating phenoxide ligands: trans-[Mg(2-np)2(OH2)2]. The calcium monohydrate salt is a novel one-dimensional polymer with a ... Ca(µ-O)2Ca(µ-O)2Ca ... spine, the ligand pairs chelating the calcium with phenoxide-O additionally bridging. The seven-coordinate calcium atoms lie on the crystallographic 2 axis with the water molecule, also on that axis, making up a seven-coordinate environment. The tetrahydrate is also a one-dimensional polymer with a similar spine, the bridging oxygen atoms derivative of water molecules. A chelating ligand and two further water molecules make up an eight-coordinate metal environment, with the free anions interleaving stacks of coordinated anions up c.


2004 ◽  
Vol 848 ◽  
Author(s):  
Olivier Durupthy ◽  
Saïd Es-salhi ◽  
Nathalie Steunou ◽  
Thibaud Coradin ◽  
Jacques Livage

ABSTRACTVarious cations (Li+, Na+, K+, NH4+, Cs+, Mg2+, Ca2+, Ba2+) were introduced during the formation of a V2O5. nH2O gel. Cation intercalated Xy V2O5. nH2O (y = 0.3 for X = Li+, Na+, K+, NH4+ or y = 0.15 for Mg2+, Ca2+, Ba2+) were first obtained at room temperature but some of them evolve upon ageing into a new phase: XV3O8. nH2O for X = Na+, K+, NH4+ and Cs+ or XV6O16. nH2O for X = Mg2+, Ca2+, Ba2+. All the vanadium oxide phases were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and infrared spectroscopy (IR); the supernatant solutions were analysed by 51V NMR spectroscopy. These vanadium oxide phases exhibit a layered structure with cations and water molecules intercalated within the interlayer space. The formation of the different phases depends mainly on the pH of the supernatant solution and on the nature of the cation.


An idealized model is proposed for the arrangement of the molecules in liquid water which involves essentially a sixfold co-ordination of water molecules with four short OH...O hydrogen bonds of ~2.9 Å length and two long O...O contacts of ~3.6 Å length. An ice-like structure may contribute to a small extent also. This octahedral model has been based on evidence obtained from X-ray and infra-red absorption measurements. The model has been found to be in agreement with the density of water and the melting entropy of ice. The reliability of the radial distribution curves W(r) of liquid water obtained from recent X-ray diffraction measurements is discussed. Infra-red absorption measurements have been made of liquid HDO in excess D 2 O and H 2 O, respectively. The respective O—H and O—D stretching vibration frequencies of liquid HDO have been determined. The position (at 3400 cm -1 ) and shape of the relatively sharp single O—H stretching absorption band of liquid HDO is closely comparable to the corresponding band in liquid interbonding alcohols. The results of the infra-red studies indicate an OH...O distance of 2.86 Å in liquid water at room temperature.


1970 ◽  
Vol 48 (13) ◽  
pp. 2096-2103 ◽  
Author(s):  
George Brink ◽  
Michael Falk

Infrared spectra of undeuterated and partially deuterated NaclO4•H2O, LiClO4•3H2O, and Ba(ClO4)2•3H2O were examined. Crystallographic data point to a weak hydrogen bond between water molecules and the perchlorate ions in LiClO•3H2O. This is confirmed by the high HDO stretching frequencies for this compound. The nearly identical HDO stretching frequencies in LiClO4•3H2O, NaClO4•H2O, Ba(ClO4)2•3H2O, and in aqueous solutions of these salts show that similar weak hydrogen bonds occur in all three hydrates and in solution. The hydrogen bond energy is of the order of 2 kcal/mole. In all three compounds the water molecules are symmetric at room temperature. At −165° the water molecules become highly distorted in the sodium compound, slightly distorted in the barium compound, and remain undistorted in the lithium compound. Very narrow OD stretching bands are observed, showing that the hydrogen atom positions are ordered in all three hydrates.


Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 588
Author(s):  
Shingo Machida ◽  
Ken-ichi Katsumata ◽  
Atsuo Yasumori

In this paper, the regioselective reactions of kaolinite and methoxy-modified kaolinite (MeO-Kaol), methanol-expanded kaolinite, with octadecyltrimethylammonium salts are compared. This study mainly concerns the reactions of kaolinite or MeO-Kaol with octadecyltrimethylammonium chloride (C18TAC) in methanol and the subsequent exhaustive washing of the resultant products with ethanol. X-ray diffraction patterns of the products reveal no intercalation of C18TAC between pristine kaolinite layers. Additionally, intercalation and subsequent deintercalation of C18TAC proceed in the product using MeO-Kaol. In the Fourier-transform infrared spectra, the intensities of CH2 stretching bands of the product prepared using MeO-Kaol drastically increase compared to those using kaolinite. In addition, CH2 stretching bands of the product using kaolinite are hardly observed without enlarging the spectrum. The product using MeO-Kaol also displays mass loss in the range of 200–300 °C in the thermogravimetric curve and a nitrogen content with 0.15 mass% estimated using the CHN analysis. These results therefore demonstrate an increase in the available reactive edges in the layered crystal material following an expansion of the stacked layers.


1979 ◽  
Vol 57 (19) ◽  
pp. 2640-2645 ◽  
Author(s):  
J. Umemura ◽  
G. I. Birnbaum ◽  
D. R. Bundle ◽  
W. F. Murphy ◽  
H. J. Bernstein ◽  
...  

The Raman and infrared spectra of crystalline methyl 3,6-dideoxy-β-D-ribo-hexopyranoside monohydrate in the O—H stretching region have been studied at room temperature and lower temperatures. Four bands have been identified and correlated with the corresponding O … O distances of the four distinct hydrogen bonds obtained from X-ray data. The assignments were substantiated by a deuterium isotopic dilution study.


Clay Minerals ◽  
1996 ◽  
Vol 31 (1) ◽  
pp. 45-52 ◽  
Author(s):  
E. Murad ◽  
U. Wagner

AbstractThe phase changes that took place upon heating an Fe-rich illite (OECD #5) to 1300°C in an oxidizing atmosphere were studied by a variety of mineralogical techniques. Infrared spectra, showing the stepwise dehydroxylation of the illite, showed good agreement with variations in sample colour and Mössbauer spectra. Dehydroxylation did not lead to noticeable variations in X-ray powder diffraction patterns until the structural breakdown of illite and formation of new phases at about 900°C Mössbauer spectroscopy proved to be very sensitive to all changes induced by heating, showing the disappearance of Fe2+ at 250°C, the gradual dehydroxylation between about 350 and 900°C, and characteristic features of the products formed at higher temperatures, e.g. the formation of hematite as the illite structure breaks down and the subsequent disappearance of hematite due to the incorporation of Fe in glass above 1200°C. The formation of hematite in clusters large enough to order magnetically at room temperature was first observed in the sample heated to 900°C, whereas at 4.2 K, significant proportions of a magnetically ordered phase could already be identified in the sample heated to 650°C.


1994 ◽  
Vol 348 ◽  
Author(s):  
V. K. Egorov ◽  
N.V. Klassen ◽  
V.D. Negrii ◽  
V.M. Prokopenko ◽  
S.Z. Shmurak ◽  
...  

ABSTRACTThe spectral characteristics for cubic and orthorhombic lead fluoride excited by light with energies of 5–2.5 eV, X-ray, and α-particles were studied. It is shown that the room temperature luminescence in orthorhombic lead fluoride is connected with resonance excitations of some luminescence centers. Possible models of the centers responsible for this phenomenon are proposed.


Sign in / Sign up

Export Citation Format

Share Document