scholarly journals Color stability of heat polymerized polymethyl methacrylate resin denture base after addition of high molecular nano chitosan

2016 ◽  
Vol 49 (4) ◽  
pp. 185
Author(s):  
Ika Devi Adiana ◽  
Trimurni Abidin ◽  
Lasminda Syafiar

Background: The addition of other ingredients to maintain color stability of heat polymerized polymethylmethacrylate is being developed. One of them is by adding high molecular nano chitosan. Purpose: This study aimed to determine the color stability of heat polymerized polymethyl methacrylate denture base resin after an addition of high molecular nano chitosan. Method: 30 sample pieces of acrylic plate (40x10x2 mm) were divied into 6 groups: control group and groups with the addition of chitosan nano gel percentages of 0.25, 0.50, 0.75, 1.0 and 1.50%. 2 ml chitosan nano gel was added into the mixture of acrylic resin with 23 g : 10 ml (P : L). After the mixture was inserted into a mold and then pressed and cured at 74oC for 120 minutes and then 100o C for 60 minutes. Acrylic plates were then released from the mold and finished. Color stability of acrylic resin were measured using UV-Vis Spectrophotometer and analyzed with a one way Anova. Result: The results showed significant differences in color stability after the addition of high molecular nano chitosan. The best color stability found in 1.0% the addition of chitosan nano gel group, the value was 0.07589 cm-1. Conclusion: The chitosan nano gel can be used to maintain color stability of heat polymerized polymethyl methacrylate denture base resin.

2015 ◽  
Vol 9 (1) ◽  
pp. 402-408 ◽  
Author(s):  
A.A.R. Khaledi ◽  
M. Bahrani ◽  
S. Shirzadi

Statement of the Problem: Bonding failure between acrylic resin and soft liner material and also gradual loss of soft liner resiliency over time are two impending challenges frequently recognized with a denture base embraced with a resilient liner. Since patients drink various beverages, it is crucial to assess the influences of these beverages on physical characteristics of soft liners. Purpose: This in vitro study envisioned to assess the influence of food simulating agents (FSA) on the hardness of a silicone soft liner by employing a Shore A durometer test and also evaluate its bond strength to a denture base resin by using tensile bond strength test. Materials and Methods: To test the hardness of samples, 50 rectangular samples (40 mm × 10 mm × 3 mm) were prepared from a heat-polymerized polymethyl methacrylate (Meliodent). Mollosil, a commercially available silicone resilient liner, was provided and applied on the specimens following the manufacturer’s directions. In order to test tensile bond strength, 100 cylindrical specimens (30 mm × 10 mm) were fabricated. The liners were added between specimens with the thicknesses of 3 mm. The specimens were divided into 5 groups (n=10) and immersed in distilled water, heptane, citric acid, and 50% ethanol. For each test, we used 10 specimens as a baseline measurement; control group. All specimens were kept in dispersed containers at 37ºC for 12 days and all solutions were changed every day. The hardness was verified using a Shore A durometer and the tensile bond strength was examined by an Instron testing machine at a cross-head speed of 5 mm/min. The records were analyzed employing one-way ANOVA, Tukey’s HSD, and LSD tests. Results: The mean tensile bond strength ± standard deviation (SD) for Mollosil was as follows for each group: 3.1 ± 0.4 (water), 1.8 ± 0.4 (citric acid), 3.0 ± 0.4 (heptane), 1.2 ± 0.3 (50% ethanol), and 3.8 ± 0.4 (control). The hardness values for each group were: 28.7 ± 2.11 (water), 33.2 ± 2.82 (citric acid), 39.2 ± 4.8 (heptane), 32.3 ± 3.56 (50% ethanol) and 22.2 ± 2.08 (control). Mean values for hardness indicated that all of the food simulating agents significantly increased hardness of the Mollosil soft liner compared to the control group (p<0.05). The results of tensile bond strength depicted that water and FSA decreased the bond strength of the soft liner -denture base resin compared to the control group and it was statistically significant (p<0.05). Conclusion: The food simulating agents could influence the mechanical properties of silicone soft liners; hence, clinicians should inform their patients concerning their possible adverse effects and complications.


2016 ◽  
Vol 17 (2) ◽  
pp. 154-159 ◽  
Author(s):  
Farzaneh Ahrari ◽  
Mohammadreza Nakhaei ◽  
Hossein Dashti ◽  
Samaneh Vasigh ◽  
Shazia Mushtaq ◽  
...  

ABSTRACT Aim The aim of this study is to evaluate the effects of three different surface treatments and thermocycling on the tensile strength of a silicone lining material to denture resin. Materials and methods A total of 96 cube-shaped specimens were fabricated using heat-cured polymethyl methacrylate (PMMA) denture base resin. Three millimeters of the material was cut from the midsection. The specimens were divided into four groups. The bonding surfaces of the specimens in each group received one of the following surface treatments: no surface treatment (control group), airborne particle abrasion with 110 μm alumina particles (air abrasion group), Er:yttrium aluminum garnet laser irradiation (laser group), and air abrasion + laser. After the lining materials were processed between the two PMMA blocks, each group was divided into two subgroups (n = 12), either stored in distilled water at 37°C for 24 hours or thermocycled between 5 and 55°C for 5,000 cycles. The specimens were tested in tensile and shear strength in a universal testing machine. Data were analyzed with two-way analysis of variance and Tamhane's post hoc tests (α = 0.05). The mode of failure was determined, and one specimen in each group was examined by scanning electron microscopy. Results Surface-treated groups demonstrated significantly higher tensile strengths compared to the control group (p < 0.001). Nonetheless, no significant differences were found between surface-treated groups (p > 0.05). The tensile strength was significantly different between thermocycled and waterstored specimens (p = 0.021). Conclusion Altering the surface of the acrylic denture base resin with air abrasion, laser, and air abrasion + laser increased the tensile strength. Thermocycling resulted in decrease in bond strength of silicone-based liner to surface-treated acrylic resin. Clinical significance Pretreatment of denture base resins before applying the soft liner materials improves the bond strength. However, thermocycling results in decrease in bond strength of soft denture liner to surface-treated acrylic resin. How to cite this article Nakhaei M, Dashti H, Ahrari F, Vasigh S, Mushtaq S, Shetty RM. Effect of Different Surface Treatments and Thermocycling on Bond Strength of a Silicone-based Denture Liner to a Denture Base Resin. J Contemp Dent Pract 2016;17(2):154-159.


2020 ◽  
Vol 6 (1) ◽  
pp. 01-05
Author(s):  
Abhinav Agarwal ◽  
Manesh Lahori ◽  
Dharmesh Kumar

Purpose: The purpose of this study was to compare the transverse strength of denture base resin reinforced with two distinct fibers and their combination with the denture base resin without any reinforcement. MaterialsandMethod: Atotal40testsamplesofclearheatcureresinwerefabricatedwiththehelpofa customized metallic die and divided in to four groups- Group1: samples fabricated with clear acrylic resin without any reinforcement(Control group),Group2: samples reinforced with carbon fiber epoxy resin composite block, Group3: samples reinforced with glass fiber epoxy resin composite block, Group 4: samples reinforced with combination of carbon and glass fiber epoxy resin composite block. After finishing and polishing all the samples were having final dimension of 3 cm × 1 cm × 0.3cm with a ±0.02 error measured with digital vernier caliper. Samples were immersed in water for 7 days in an incubator. A 3-point bend test was done in a universal testing machine, and load to fracture was recorded (MPa). Statistical analysis was performed using one way analysis of variance (ANOVA) followed by tukey HSD post-hoc test to compare mean transverse Strength in four groups. Results: Group 2 and group 4 showed highest strength with significant difference with all other groups and non-significant with each other. Group1(control group) showed lowest transverse strength among all the groups. Conclusion: carbon fiber and glass fiber alone provided either good transverse strength or good esthetics respectively while unique combination of carbon and glass fiber epoxy resin composite significantly increased the transverse strength of acrylic resin along with good esthetics.


2013 ◽  
Vol 44 ◽  
pp. 180-183 ◽  
Author(s):  
Ana Carolina Pero ◽  
Priscila Mattos Scavassin ◽  
Andressa Rosa Perin Leite ◽  
Danny Omar Mendoza Marin ◽  
André Gustavo Paleari ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Mohammed M. Gad ◽  
Reem Abualsaud ◽  
Shaimaa M. Fouda ◽  
Ahmed Rahoma ◽  
Ahmad M. Al-Thobity ◽  
...  

Statement of Problem. Novel polymethyl methacrylate (PMMA) containing zirconium dioxide nanoparticles (nano-ZrO2) was suggested as a denture base material but there is a lack of information regarding denture cleanser effects. Objectives. This study aimed to evaluate denture cleanser effects on color stability, surface roughness, and hardness of PMMA denture base resin reinforced with nano-ZrO2. Materials and Methods. A total of 420 specimens were fabricated of unreinforced and nano-ZrO2 reinforced acrylic resin at 2.5% and 5%, resulting in 3 main groups. These groups were further subdivided (n = 10) according to immersion solution (distilled water, Corega, sodium hypochlorite, and Renew) and immersion duration. Surface roughness, hardness, and color were measured at baseline (2 days-T0) in distilled water and then after 180 and 365 days of immersion (T1 & T2) in water or denture cleansing solutions. Data was collected and analyzed using two-way ANOVA followed by Bonferroni post hoc test (α = 0.05). Results. Surface roughness increased significantly after denture cleanser immersion of unmodified and nano-ZrO2-modified PMMA materials while hardness decreased ( P < 0.001 ). The denture cleansers significantly affected the color of both PMMA denture bases ( P < 0.001 ). The immersion time in denture cleansers significantly affected all tested properties ( P < 0.001 ). Within denture cleansers, NaOCl showed the highest adverse effects ( P < 0.05 ) while Renew showed the least adverse effects. Conclusion. Denture cleansers can significantly result in color change and alter the surface roughness and hardness of denture base resin even with ZrO2 nanoparticles addition. Therefore, they should be carefully used.


Author(s):  
Sara T. Alzayyat ◽  
Ghadah A. Almutiri ◽  
Jawhara K. Aljandan ◽  
Raneem M. Algarzai ◽  
Soban Q. Khan ◽  
...  

Abstract Objective The aim of this study was to evaluate the effects of the addition of low-silicon dioxide nanoparticles (nano-SiO2) on the flexural strength and elastic modulus of polymethyl methacrylate (PMMA) denture base material. Materials and Methods A total of 50 rectangular acrylic specimens (65 × 10 × 2.5 mm3) were fabricated from heat-polymerized acrylic resin. In accordance with the amount of nano-SiO2, specimens were divided into the following five groups (n = 10 per group): a control group with no added SiO2, and four test groups modified with 0.05, 0.25, 0.5, and 1.0 wt% nano-SiO2 of acrylic powder. Flexural strength and elastic modulus were measured by using a 3-point bending test with a universal testing machine. A scanning electron microscope was used for fracture surface analyses. Data analyses were conducted through analysis of variance and Tukey’s post hoc test (α = 0.05). Results Compared with the control group, flexural strength and modulus of elasticity tended to significantly increase (p ˂ 0.001) with the incorporation of nano-SiO2. In between the reinforced groups, the flexural strength significantly decreased (p ˂ 0.001) as the concentrations increased from 0.25 to 1.0%, with the 1.0% group showing the lowest value. Furthermore, the elastic modulus significantly increased (p ˂ 0.001) at 0.05% followed by 1.0%, 0.25%, 0.5%, and least in control group. Conclusion A low nano-SiO2 addition increased the flexural strength and elastic modulus of a PMMA denture base resin.


Sign in / Sign up

Export Citation Format

Share Document