scholarly journals Development of Membrane filter Made of Alumina and Silver-Palladium Particles for High-Filtration Efficiency, Low-Pressure Drop and Low-Soot Oxidation Temperature

2020 ◽  
Vol 11 (4) ◽  
pp. 151-158
Author(s):  
Teerapat Suteerapongpun ◽  
Yuji Kitagawa ◽  
Mek Srilomsak ◽  
Katsunori Hanamura
2016 ◽  
Vol 4 (16) ◽  
pp. 6149-6157 ◽  
Author(s):  
Shichao Zhang ◽  
Hui Liu ◽  
Jianyong Yu ◽  
Wenjing Luo ◽  
Bin Ding

Microwave structured PA-6/PMIA NFN membrane can filter airborne particles with high filtration efficiency, low pressure drop, and large dust-holding capacity.


2017 ◽  
Vol 748 ◽  
pp. 423-427
Author(s):  
Jin Yu Zhao ◽  
Zhao Lin Liu ◽  
Ju Chuan Shan

Polyvinyl alcohol (PVA) nanofibrous membrances for effective air filtration were fabricated by electrospinning. Tunable fiber morphologies can be formed by facilely regulating the solution concentration and the applied voltage, and their effect on filtration performance of the PVA membrances were also investigeted. Results show that the PVA membrance exhibits high filtration efficiency of 97.1% and low pressure drop of 113 Pa when the PVA concentration is 8 wt% and the applied voltage is 15 kV with a tip-to-collector distance of 15 cm and a feed rate of 1 ml/h.


Polymers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 485
Author(s):  
Xing Zhang ◽  
Jinxin Liu ◽  
Haifeng Zhang ◽  
Jue Hou ◽  
Yuxiao Wang ◽  
...  

Particulate matter (PM) and airborne viruses bring adverse influence on human health. As the most feasible way to prevent inhalation of these pollutants, face masks with excellent filtration efficiency and low press drop are in urgent demand. In this study, we report a novel methodology for producing high performance air filter by combining melt blown technique with corona charging treatment. Changing the crystal structure of polypropylene by adding magnesium stearate can avoid charge escape and ensure the stability of filtration performances. Particularly, the influence of fiber diameter, pore size, porosity, and charge storage on the filtration performances of the filter are thoroughly investigated. The filtration performances of the materials, including the loading test performance are also studied. The melt blown materials formed by four layers presented a significant filtration efficiency of 97.96%, a low pressure drop of 84.28 Pa, and a high quality factor (QF) of 0.046 Pa−1 for paraffin oil aerosol particles. Meanwhile, a robust filtration efficiency of 99.03%, a low pressure drop of 82.32 Pa, and an excellent QF of 0.056 Pa−1 for NaCl aerosol particles could be easily achieved. The multi-layered melt blown filtration material developed here would be potentially applied in the field of protective masks.


2008 ◽  
Vol 587-588 ◽  
pp. 810-814 ◽  
Author(s):  
Susana Dias ◽  
Fernando A. Costa Oliveira ◽  
C. Henriques ◽  
F.R. Ribeiro ◽  
Carmen M. Rangel ◽  
...  

The reactors used for Selective Catalytic Reduction (SCR) of NOx require low pressure drop structured catalyst packing. Structured packings, such as ceramic foams, are gaining increasing interest for application in low pressure drop reactors, membrane reactors and catalytic distillation units. In this work, cobalt ion exchanged mordenite (Co-HMOR)-coated cordierite-based foams produced by the replication method were evaluated for catalytic reduction of NOx with methane. The addition of 0.3 wt.% Pd to 2 wt.% Co-HMOR leads to a material that can convert 50 % NOx to N2 at 450 °C in a reaction mixture containing 2000 ppm CH4, 1000 ppm NOx, 5 % O2 and balance helium, at GHSV=17000 h-1. Although in an early stage of development, an efficient coating procedure was explored and different ways of exchange of Co and Pd cations into mordenite (Si/Al=10) were studied. Additions of 2 wt.% fumed silica enhanced adhesion of the zeolite onto the ceramic foam. Pd-exchanged Co-HMOR showed to be very sensitive to steam. A 50 % decrease in NOx conversion to N2 was observed after Pd/Co-HMOR samples were exposed at 450 °C to a reaction mixture containing 2 vol% H2O. Although further research is needed to ascertain the mechanism of this deactivation behaviour, agglomeration of Pd forming PdO particles is envisaged.


2019 ◽  
Vol 212 ◽  
pp. 699-708 ◽  
Author(s):  
De-Qiang Chang ◽  
Chi-Yu Tien ◽  
Chien-Yuan Peng ◽  
Min Tang ◽  
Sheng-Chieh Chen

Author(s):  
S. Kumar ◽  
S. Jayanti

In this paper, we present experimental studies of electrochemical performance of an all-vanadium redox flow battery cell employing an active area of 103 cm2, activated carbon felt, and a novel flow field, which ensures good electrolyte circulation at low pressure drops. Extended testing over 151 consecutive charge/discharge cycles has shown steady performance with an energy efficiency of 84% and capacity fade of only 0.26% per cycle. Peak power density of 193 mW cm−2 has been obtained at an electrolyte circulation rate of 114 ml min−1, which corresponds to stoichiometric factor of 4.6. The present configuration of the cell shows 20% improved in peak power and 30% reduction in pressure drop when compared to a similar cell with a different electrode and a serpentine flow field.


Sign in / Sign up

Export Citation Format

Share Document