scholarly journals Genomic imprinting and its role in ethiology of human hereditary diseases

2004 ◽  
Vol 3 (3) ◽  
pp. 8-17
Author(s):  
S. A. Nazarenko

Genomic imprinting is a form of non-Mendelian epigenetic inheritance that is defined by differential gene expression depending on its parental origin — maternal or paternal. It is known about 60 imprinted genes many of which effect significantly on the fetus growth and development. Methylation of DNA cytosine bases that defines the interaction of DNA and proteins identifying the modified bases and controls the gene expression through chromatin compacting-decompacting mechanism, is a main epigenetic genom modifier. Disturbances in monoallelic gene expression lead to the development of a special class of human hereditary diseases — genomic imprinting diseases.

2018 ◽  
Vol 115 (42) ◽  
pp. E9962-E9970 ◽  
Author(s):  
Haifeng Zhu ◽  
Wenxiang Xie ◽  
Dachao Xu ◽  
Daisuke Miki ◽  
Kai Tang ◽  
...  

Genomic imprinting is a form of epigenetic regulation resulting in differential gene expression that reflects the parent of origin. In plants, imprinted gene expression predominantly occurs in the seed endosperm. Maternal-specific DNA demethylation by the DNA demethylase DME frequently underlies genomic imprinting in endosperm. Whether other more ubiquitously expressed DNA demethylases regulate imprinting is unknown. Here, we found that the DNA demethylase ROS1 regulates the imprinting of DOGL4. DOGL4 is expressed from the maternal allele in endosperm and displays preferential methylation and suppression of the paternal allele. We found that ROS1 negatively regulates imprinting by demethylating the paternal allele, preventing its hypermethylation and complete silencing. Furthermore, we found that DOGL4 negatively affects seed dormancy and response to the phytohormone abscisic acid and that ROS1 controls these processes by regulating DOGL4. Our results reveal roles for ROS1 in mitigating imprinted gene expression and regulating seed dormancy.


eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Anne C Ferguson-Smith ◽  
Deborah Bourchis

The discovery of genomic imprinting by Davor Solter, Azim Surani and co-workers in the mid-1980s has provided a foundation for the study of epigenetic inheritance and the epigenetic control of gene activity and repression, especially during development. It also has shed light on a range of diseases, including both rare genetic disorders and common diseases. This article is being published to celebrate Solter and Surani receiving a 2018 Canada Gairdner International Award "for the discovery of mammalian genomic imprinting that causes parent-of-origin specific gene expression and its consequences for development and disease".


Epigenetics ◽  
2010 ◽  
Vol 5 (2) ◽  
pp. 149-158 ◽  
Author(s):  
Ismail Zaitoun ◽  
Karen M. Downs ◽  
Guilherme J. M. Rosa ◽  
Hasan Khatib

2012 ◽  
Vol 2012 ◽  
pp. 1-17 ◽  
Author(s):  
William A. MacDonald

Genomic imprinting is a form of epigenetic inheritance whereby the regulation of a gene or chromosomal region is dependent on the sex of the transmitting parent. During gametogenesis, imprinted regions of DNA are differentially marked in accordance to the sex of the parent, resulting in parent-specific expression. While mice are the primary research model used to study genomic imprinting, imprinted regions have been described in a broad variety of organisms, including other mammals, plants, and insects. Each of these organisms employs multiple, interrelated, epigenetic mechanisms to maintain parent-specific expression. While imprinted genes and imprint control regions are often species and locus-specific, the same suites of epigenetic mechanisms are often used to achieve imprinted expression. This review examines some examples of the epigenetic mechanisms responsible for genomic imprinting in mammals, plants, and insects.


2009 ◽  
Vol 8 (2) ◽  
pp. 144-153 ◽  
Author(s):  
Yun-lei ZHAO ◽  
Shu-xun YU ◽  
Chao-zhu XING ◽  
Shu-li FAN ◽  
Mei-zhen SONG ◽  
...  

1996 ◽  
Vol 45 (1-2) ◽  
pp. 87-89
Author(s):  
R.D. Nicholls ◽  
M.T.C. Jong ◽  
C.C. Glenn ◽  
J. Gabriel ◽  
P.K. Rogan ◽  
...  

Our studies aim to identify the mechanisms and genes involved in genomic imprinting in mammalian development and human disease. Imprinting refers to an epigenetic modification of DNA that results in parent-of-origin specific expression during embryogenesis and in the adult. This imprint is reset at each generation, depending on the sex of the parental gametogenesis. Prader-Willi (PWS) and Angelman (AS) syndromes are excellent models for the study of genomic imprinting in humans, since these distinct neurobehavioural disorders are both associated with genetic abnormalities (large deletions, uniparental disomy, and imprinting mutations) of inheritance in chromosome 15q11-q13, dependent on the parental origin (reviewed in ref. 1). Some AS patients have biparental inheritance, consistent with a single imprinted gene (active on the maternal chromosome), whereas similar PWS patients are not found suggesting that at least two imprinted genes (active on the paternal allele) may be necessary for classical PWS. We have previously shown that the small ribonucleoprotein associated protein SmN gene (SNRPN), located in the PWS critical region [2], is only expressed from the paternal allele and is differentially methylated on parental alleles [3]. Therefore, SNRPN may have a role in PWS. Methylation imprints have also been found at two other loci in 15q11-q13, PW71 [4] and D15S9 [5], which map 120 kb and 1.5 Mb proximal to SNRPN, respectively. We have now characterized in detail the gene structure and expression from two imprinted loci within 15q11-q13, SNRPN and D15S9, which suggests that both loci are surprisingly complex, with important implications for the pathogenesis of PWS.


Development ◽  
2002 ◽  
Vol 129 (8) ◽  
pp. 1807-1817 ◽  
Author(s):  
Jiyoung Lee ◽  
Kimiko Inoue ◽  
Ryuichi Ono ◽  
Narumi Ogonuki ◽  
Takashi Kohda ◽  
...  

Genomic imprinting is an epigenetic mechanism that causes functional differences between paternal and maternal genomes, and plays an essential role in mammalian development. Stage-specific changes in the DNA methylation patterns of imprinted genes suggest that their imprints are erased some time during the primordial germ cell (PGC) stage, before their gametic patterns are re-established during gametogenesis according to the sex of individuals. To define the exact timing and pattern of the erasure process, we have analyzed parental-origin-specific expression of imprinted genes and DNA methylation patterns of differentially methylated regions (DMRs) in embryos, each derived from a single day 11.5 to day 13.5 PGC by nuclear transfer. Cloned embryos produced from day 12.5 to day 13.5 PGCs showed growth retardation and early embryonic lethality around day 9.5. Imprinted genes lost their parental-origin-specific expression patterns completely and became biallelic or silenced. We confirmed that clones derived from both male and female PGCs gave the same result, demonstrating the existence of a common default state of genomic imprinting to male and female germlines. When we produced clone embryos from day 11.5 PGCs, their development was significantly improved, allowing them to survive until at least the day 11.5 embryonic stage. Interestingly, several intermediate states of genomic imprinting between somatic cell states and the default states were seen in these embryos. Loss of the monoallelic expression of imprinted genes proceeded in a step-wise manner coordinated specifically for each imprinted gene. DNA demethylation of the DMRs of the imprinted genes in exact accordance with the loss of their imprinted monoallelic expression was also observed. Analysis of DNA methylation in day 10.5 to day 12.5 PGCs demonstrated that PGC clones represented the DNA methylation status of donor PGCs well. These findings provide strong evidence that the erasure process of genomic imprinting memory proceeds in the day 10.5 to day 11.5 PGCs, with the timing precisely controlled for each imprinted gene. The nuclear transfer technique enabled us to analyze the imprinting status of each PGC and clearly demonstrated a close relationship between expression and DNA methylation patterns and the ability of imprinted genes to support development.


1993 ◽  
Vol 339 (1288) ◽  
pp. 165-172 ◽  

Parental genomes in mammals are programmed in the germline with heritable epigenetic modifications that exert control on the expression of specific (imprinted) genes. DNA methylation is one form of epigenetic modification which shows marked genome-wide variations in the germline and during early development. Certain transgene loci also demonstrate (reversible) germline-specific methylation imprints that are heritable in somatic tissues during development. Recently, four endogenous genes have been identified whose expression is dependent on their parental origin. The mechanism of genomic imprinting and the role of imprinted genes during development is beginning to be analysed. Three of these genes map to the mouse chromosome 7. Human chromosomes 11p13, 11p15, and 15ql 1-13 are associated with disorders exhibiting parental origin effects in their patterns of inheritance. These regions share syntenic homology with mouse chromosome 7. The relationship between parental imprints, germ line-dependent epigenetic inheritance and totipotency is also under investigation using embryonic stem cells derived from the epiblast. These cells are pluripotent or totipotent and evidence indicates the presence of at least the primary parental imprints. However, imprints inherited from the paternal germline in androgenetic cells are apparently more stable than those from the female germline in parthenogenetic cells.


2018 ◽  
Author(s):  
Jordi Moreno-Romero ◽  
Gerardo Del Toro-De León ◽  
Vikash Kumar Yadav ◽  
Juan Santos-González ◽  
Claudia Köhler

ABSTRACTBackgroundImprinted genes are epigenetically modified during gametogenesis and maintain the established epigenetic signatures after fertilization, causing parental-specific gene expression.ResultsIn this study, we show that imprinted paternally-expressed genes (PEGs) in the Arabidopsis endosperm are marked by an epigenetic signature of Polycomb Repressive Complex2 (PRC2)-mediated H3K27me3 together with heterochromatic H3K9me2 and CHG methylation, which specifically mark the silenced maternal alleles of PEGs. The co-occurrence of H3K27me3 and H3K9me2 on defined loci in the endosperm drastically differs from the strict separation of both pathways in vegetative tissues, revealing tissue-specific employment of repressive epigenetic pathways in plants. Based on the presence of this epigenetic signature on maternal alleles we were able to predict known PEGs at high accuracy and identified several new PEGs that we confirmed using INTACT-based transcriptomes generated in this study.ConclusionsThe presence of the three repressive epigenetic marks, H3K27me3, H3K9me2, and CHG methylation on the maternal alleles in the endosperm serves as a specific epigenetic signature that allows to predict genes with parental-specific gene expression. Our study reveals that there are substantially more PEGs than previously identified, indicating that paternal-specific gene expression is of higher functional relevance than currently estimated. The combined activity of PRC2-mediated H3K27me3 together with the heterochromatic H3K9me3 has also been reported to silence the maternal Xist locus in mammalian preimplantation embryos, suggesting convergent employment of both pathways during the evolution of genomic imprinting.


Sign in / Sign up

Export Citation Format

Share Document