scholarly journals Heterosis and Combining Ability Studies for Yield and Yield Component Traits in Rice (Oryza sativa L.)

Author(s):  
K. Sudeepthi ◽  
D.P.B. Jyothula ◽  
Y. Suneetha
Author(s):  
T. Vange ◽  
G. O. S. Ojo ◽  
A. M. Ladan

A ten – parent diallel experiment was carried out at the Teaching and Research Farms of the Federal University of Agriculture, Makurdi, Nigeria, to estimate combining ability and heterosis in rice. The design was a 10x10 alpha lattice with three replications and data was collected on plant height (PH), tiller numbers/plant (TN), leaf length (LL) and width (LW), days to flowering (DF), panicle length (PL), panicle exsertion (PE), spikelet numbers/panicle (SN), 100 seed weight (100SW) and days to maturity(DM). A preponderance of both additive and non – additive gene action with both negative and positive GCA, SCA and % heterosis was observed in the control of yield component traits in the studied rice varieties and their hybrids. Non – additive variance was higher, except for DF, SN and DM where additive variance was higher compared to non – additivity. Six parents, namely MGD 101, FARO 44, FARO 52, FARO 57, STRASSA 58 and IR 72 recorded the highest GCA values for most of the traits and the least values in terms of days to flowering and maturity. These parents were the most frequent in crosses with the highest SCA effects and % heterosis for Tiller number, Leaf length, leaf width, panicle length and Spikelet numbers/panicle. Crosses involving these six parents also recorded the least SCA effects and % heterosis for days to flowering and maturity. Based on the results of GCA, SCA and % heterosis, backcross breeding of F1s to their respective parents (the six parents), was recommended for improvement of yield component traits.


2013 ◽  
Vol 5 (1) ◽  
pp. 90-97 ◽  
Author(s):  
Srikrishna LATHA ◽  
Deepak SHARMA ◽  
Gulzar S. SANGHERA

The nature and magnitude of heterosis and combining ability was studied in 18 F1 hybrids involving three CMS lines and six testers using line × tester analysis. The analysis of variance for combining ability of all the traits showed that variances due to treatments, parents, hybrids were highly significant. The line ‘CRMS 32A’ and testers viz. ‘Super rice-8’, ‘R 1099-2569-1-1’ and ‘Jitpiti’ were identified as good general combiners. The significant differences between lines x testers interaction indicates that SCA attributed heavily in the expression of these traits and demonstrates the importance of dominance or non additive variances for all the traits. The hybrid ‘CRMS 32A’/‘R 1099-2569-1-1’ and ‘APMS 6A’/‘Super rice-8’ were promising for grain yield. The magnitude of relative heterosis, heterobeltiosis and standard heterosis were also estimated for different characters. A high degree of relative heterosis was observed for grain yield (20.45- 82.37%) in the hybrids viz., ‘CRMS 32A’/‘Super rice-8’, ‘APMS 6A’/‘Super rice-8’, ‘APMS 6A’/‘Jitpiti’ and ‘CRMS 32A’/‘R 1099-2569-1-1’. While, a higher degree of: heterobeltiosis (13.60 -68.37%) was observed for grain yield in the hybrids viz., ‘CRMS 32A’/‘Super rice-8’, ‘CRMS 32A’/‘R 1099-2569-1-1’, ‘APMS 6A’/’Super rice-8’ and ‘APMS 6A’/’Jitpiti’. A high degree of standard heterosis was observed for grain yield in the hybrid ‘CRMS 32A’/‘R 1099-2569-1-1’. The hybrid ‘CRMS 32A’/ ‘R 1099-2569-1-1’ recorded a high degree of relative heterosis (62.01%), heterobeltiosis (57.35%) and standard heterosis (15.05 and 25.51% over check hybrids, ‘Mahamaya’ and ‘Indirasona’, respectively) that can be tested on yield trials for its further testing over locations.


Sign in / Sign up

Export Citation Format

Share Document