scholarly journals Contributions to The Design Methodology of Three-phase Active Rectifiers to Comply with Avionic Standards: Input Voltage Distortion and Phase Loss

2019 ◽  
Author(s):  
Uros Borovic
2014 ◽  
Vol 668-669 ◽  
pp. 812-817
Author(s):  
De Hui Lin ◽  
Ping Lou ◽  
Hui Pin Lin

This paper introduces a kind of monolithic emitter switched bipolar transistor (ESBT) for three-phase rectifier applications and other high voltage applications. This paper proposes an improved driving circuit, combining the soft switch circuit. We made a flyback circuit prototype which the rated power is 80W, and the maximum input voltage is 800V, and compared with the existing driving circuit.


Author(s):  
P. Vimala ◽  
C. R. Balamurugan ◽  
A. Subramanian ◽  
T. Vishwanath

The FOPID and PID controller are designed to control the speed of <br /> the BLDC motor. The parameters , , , λ and µ of these controller are optimized based on genetic algorithm. The optimized coefficients keep in track with zero error signals. The output of the controller is given to the variable dc source which varies the input voltage to the three phase inverter depending on the input signal. The three phase inverter gives the voltage to the BLDC motor which enhances the stability of the system. <br /> The effectiveness of the controller is demonstrated by simulation.


Energies ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 2923
Author(s):  
Matias Berg ◽  
Tomi Roinila

Grid-connected and grid-forming inverters play essential roles in the utilization of renewable energy. One problem of such a converter system is the voltage deviations in the DC-link between the source and the inverter that can disrupt the inverter output voltage. A common method to prevent these voltage deviations is to apply an input-voltage feedforward control. However, the feedforward control has detrimental effects on the inverter dynamics. It is shown that the effect of the feedforward in the input-to-output dynamics is not ideal due to the delay in the digital control system. The delay affects the input-to-output dynamics at high frequencies, and only a minor improvement can be achieved by low-pass filtering the feedforward control signal. Furthermore, the feedforward control can remarkably affect the inverter input admittance, and therefore, impedance-based stability problems may arise at the DC interface. This paper proposes a method based on linearization and extra element theorem to model the effect of the feedforward control in the inverter dynamics. Experimental measurements are shown to demonstrate the effectiveness of the proposed model.


2020 ◽  
Vol 35 (1) ◽  
pp. 33-47 ◽  
Author(s):  
Uros Borovic ◽  
Sisi Zhao ◽  
Jesus Angel Oliver ◽  
Pedro Alou ◽  
Jose A. Cobos ◽  
...  

Energies ◽  
2019 ◽  
Vol 12 (21) ◽  
pp. 4093 ◽  
Author(s):  
Mora ◽  
Núñez ◽  
Visairo ◽  
Segundo ◽  
Camargo

This paper deals with a battery energy storage system (BESS) in only one of its multiple operating modes, that is when the BESS is charging the battery bank and with the focus on the control scheme design for the BESS input stage, which is a three-phase LCL-filter PWM rectifier. The rectifier's main requirements comprise output voltage regulation, power factor control, and low input current harmonic distortion, even in the presence of input voltage variations. Typically, these objectives are modeled by using a dq model with its corresponding two-loop controller architecture, including an outer voltage loop and a current internal loop. This paper outlines an alternative approach to tackle the problem by using not only an input–output map linearization controller, with the aim of a single-loop current control, but also by avoiding the dq modeling. In this case, the voltage is indirectly controlled by computing the current references based on the converter power balance. The mathematical model of the three-phase LCL-filter PWM rectifier is defined based on the delta connection of the filter, which accomplishes the requirements of a 100 kW BESS module. Extensive simulation results are included to confirm the performance of the proposed closed-loop control in practical applications.


2018 ◽  
Vol 28 (4) ◽  
pp. 1-5 ◽  
Author(s):  
Nuno Vilhena ◽  
Joao Murta-Pina ◽  
Anabela Pronto ◽  
Alfredo Alvarez

Energies ◽  
2020 ◽  
Vol 13 (19) ◽  
pp. 5076 ◽  
Author(s):  
Manel Hammami ◽  
Riccardo Mandrioli ◽  
Aleksandr Viatkin ◽  
Mattia Ricco ◽  
Gabriele Grandi

Three-phase, four-wire split capacitor inverters are currently employed in many applications, such as photovoltaic systems, battery chargers for electric vehicles, active power filters, and, in general, in all grid-tied applications that deal with possible grid voltage and/or current unbalances. This paper provides a comprehensive evaluation of the capacitor-switching voltage ripple and dc-link switching voltage ripple for the three-phase, four-wire, split capacitor inverters. Specifically, analytical formulations of the peak-to-peak and rms values of the voltage ripples are originally pointed out in this paper and determined in the case of balanced three-phase and unbalanced (two-phase and single-phase) output (ac) currents. The obtained results can help in designing the considered inverter and sizing of the dc-link capacitors. Reference is made to the sinusoidal PWM modulation and sinusoidal three-phase output currents with an almost unity power factor, representing a grid-connected application. Extensive numerical simulations have been carried out to thoroughly verify all the analytical developments presented in this paper. Furthermore, some experimental tests, having balanced output currents on the ac side, have been accomplished, validating numerical simulations and analytical developments.


Sign in / Sign up

Export Citation Format

Share Document