scholarly journals Behaviour study of "Danlas" grapevines grown under plastic cover

OENO One ◽  
2003 ◽  
Vol 37 (2) ◽  
pp. 117
Author(s):  
Aziz Ezzahouani

<p style="text-align: justify;">The aim of this study is to determine the behaviour of ‘Danlas’ grapevines conducted under plastic cover, near atlantic coast, known for its early table grape production. Measurements included climatic conditions, leaf water potential, canopy temperature and production components. The use of plastic cover resulted in an increase of midday ambient temperature and vapor pressure deficit, with a maximum of 5. 7 °C and 1.28 kPa, respectively. Midday canopy temperature under field conditions were lower than ambient temperature by an average of 2.5 °C. The most negative leaf water potential values were recoded for grapevines under plastic cover relatively to field conditions, ranging from –7.2 to –17.0 bars and from –7.0 to –14.0 bars, respectively. Harvest date was advanced by more than one month after the use of plastic cover. Results showed that crop weight, cluster weight and number per vine were not significantly affected. However, the number of berries per cluster was significantly reduced. Plastic cover promoted fruit quality, berry weight and soluble solids concentration were increased by 2.23 g and 1.0 °Brix, respectively. While titratable acidity was decreased by 1.20 g/l.</p>

2015 ◽  
Vol 45 (8) ◽  
pp. 1408-1411 ◽  
Author(s):  
Marlise Nara Ciotta ◽  
Carlos Alberto Ceretta ◽  
Massimo Tagliavini ◽  
Damiano Zanotelli ◽  
Damiano Moser ◽  
...  

Irrigating vineyard soils can affect grapevine water potential, nutritional status, and must composition. This study aimed to evaluate leaf water potential, nutritional status, and must composition in cv. 'Pinot Nero' grapevines grown with and without irrigation. The experiment was conducted at a commercial vineyard of 'Pinot Nero' 828 grafted on SO4 rootstock, established in 2002 in Trento, Northern Italy. The treatments were irrigated (I) and non-irrigated (NI) throughout the 2013 crop season. The criteria evaluated were the water potential of the leaves, total nutrient content in the leaves and berries, and weight of 100 berries, as well as the total soluble solids content, pH, and total titratable acidity of the must. Despite providing a less negative water potential for the grapevine leaves, irrigation did not affect the nutritional status or must composition, and it only slightly interfered with berry nutrient content.


2010 ◽  
Vol 67 (2) ◽  
pp. 164-169 ◽  
Author(s):  
Thomas Sotiropoulos ◽  
Dimitrios Kalfountzos ◽  
Ioannis Aleksiou ◽  
Spyros Kotsopoulos ◽  
Nikolaos Koutinas

Regulated deficit irrigation (RDI) involves inducing water stress during specific fruit growth phases by irrigating at less than full evapotranspiration. The objectives of this research were to study the effects of RDI perfomed at stage II of fruit growth and postharvest, on productivity of clingstone peaches, fruit quality as well as photosynthetic rate and midday leaf water potential. The research was conducted in a commercial clingstone peach (Prunus persica L. Batch cv. A-37) orchard in Greece. Trees were irrigated by means of microsprinklers and their frequency was determined using local meteorological station data and the FAO 56 Pennman-Monteith method. Photosynthetic rate was measured by a portable infrared gas analyzer. Midday leaf water potential was measured by the pressure chamber technique. During the years 2005 and 2006, the treatment RDII with irrigation applied at growth stage II of the peach tree did not affect productivity, fresh and dry mass of fruits. RDII reduced preharvest fruit drop in comparison to the control. RDII as well as the combined treatment RDII plus RDIP with irrigation applied at postharvest, at both years reduced shoot length of the vigorous shoots inside the canopy. RDII in comparison to the control increased the soluble solids content of the fruits and the ratio soluble solids/acidity. However it did not affect fruit acidity and fruit firmness. RDII as well as RDII plus RDIP in 2006 increased 'double' fruits and fruits with open cavity in comparison to the control and RDIP. Water savings were considerable and associated with the climatic conditions of each year.


1986 ◽  
Vol 33 (2-4) ◽  
pp. 185-203 ◽  
Author(s):  
Nader Katerji ◽  
Marc Hallaire ◽  
Yvette Menoux-Boyer ◽  
Brigitte Durand

OENO One ◽  
2014 ◽  
Vol 48 (2) ◽  
pp. 123 ◽  
Author(s):  
José Manuel Mirás-Avalos ◽  
Emiliano Trigo-Córdoba ◽  
Yolanda Bouzas-Cid

<p style="text-align: justify;"><strong>Aims</strong>: To evaluate the usefulness of predawn water potential (<strong>Ψ</strong><sub>pd</sub>) to assess the water status of Galician grapevine cultivars for irrigation purposes.</p><p style="text-align: justify;"><strong>Methods and results</strong>: Three Galician white grapevine cultivars (Albariño, Godello and Treixadura) were subjected to rain-fed and irrigation conditions during the 2013 growing season. Diurnal changes in leaf water potential (<strong>Ψ</strong><sub>l</sub>) were measured using a pressure chamber on days with high evapotranspiration demand. Stem water potential (<strong>Ψ</strong><sub>s</sub>) was measured at midday. <strong>Ψ</strong><sub>pd</sub> was not able to discriminate between treatments, whereas <strong>Ψ</strong><sub>l</sub> and <strong>Ψ</strong><sub>s</sub> at midday were able to detect significant differences in water status among plants.</p><p style="text-align: justify;"><strong>Conclusion</strong>: <strong>Ψ</strong><sub>pd</sub> was not useful to evaluate vine water status under the Galician climatic conditions. In contrast, both <strong>Ψ</strong><sub>l</sub> and <strong>Ψ</strong><sub>s</sub> were effective for detecting differences between treatments and can thus be used for irrigation management purposes.</p><p style="text-align: justify;"><strong>Significance and impact of the study</strong>: This is the first study evaluating water status of Galician grapevine cultivars. It also provides useful information about the strategy for its control through measurements of midday <strong>Ψ</strong>l or <strong>Ψ</strong>s.</p>


HortScience ◽  
2010 ◽  
Vol 45 (8) ◽  
pp. 1178-1187 ◽  
Author(s):  
D. Michael Glenn ◽  
Nicola Cooley ◽  
Rob Walker ◽  
Peter Clingeleffer ◽  
Krista Shellie

Water use efficiency (WUE) and response of grape vines (Vitis vinifera L. cvs. ‘Cabernet Sauvignon’, ‘Merlot’, and ‘Viognier’) to a particle film treatment (PFT) under varying levels of applied water were evaluated in Victoria, Australia, and southwestern Idaho. Vines that received the least amount of water had the warmest canopy or leaf surface temperature and the lowest (more negative) leaf water potential, stomatal conductance (gS), transpiration (E), and photosynthesis (A). Vines with plus-PFT had cooler leaf and canopy temperature than non-PFT vines; however, temperature difference resulting from irrigation was greater than that resulting from PFT. In well-watered vines, particle film application increased leaf water potential and lowered gS. Point-in-time measurements of WUE (A/E) and gS did not consistently correspond with seasonal estimates of WUE based on carbon isotope discrimination of leaf or shoot tissue. The response of vines with particle film to undergo stomatal closure and increase leaf water potential conserved water and enhanced WUE under non-limiting soil moisture conditions and the magnitude of response differed according to cultivar.


Sign in / Sign up

Export Citation Format

Share Document