scholarly journals INDUKSI KALUS EMBRIOGENIK DAN EMBRIO SOMATIK DARI EKSPLAN DAUN KULIM (Scorodacarpus borneensis Becc.)

2020 ◽  
Vol 14 (2) ◽  
pp. 73-81
Author(s):  
Yelnititis Yelnititis ◽  

Kulim is one of woody plant that have multifunction as wood source and for spice and medicinal. Generative propagation of this plant have trouble because seed use limited. The use of leaf segment through somatic embryogenesis to solve the problem. The objective of this study is to obtain the best treatment to embryogenic callus induction. The modification of basal medium of Murashige and Skoog was used as growth medium. The experiment was conducted in three stages are callus induction, embryogenic callus and somatic embryo induction. The treatment of 2,4-D (3,0 – 12 mg/l) used for callus induction. For embriogenic callus induction used 2,4-D (3,0 – 12,0 mg/l) combined with NAA 0,5 mg/l. The treatment of thidiazuron (0,1 – 0,7 mg/l) used for somatic embryo induction. The result showed that the treatment of 2,4-D 6,0 mg/l is the best for callus induction with compact of texture, green, dry and non embryogenic. The treatment of combination 2,4-D 12.0 mg/l with NAA 0.5 mg/l is the best for friable callus induction. The treatment of 2,4-D 6.0 mg/l combined with NAA 0,5 mg/l is the best for embryogenic callus induction with very friable of texture, easy to separate, dry, smooth and glossy. Thidiazuron of 0,1 mg/l treatment is the best for somatic embryos induction with the average number of 7,8 somatic embryos.

2017 ◽  
Vol 44 (3) ◽  
pp. 261
Author(s):  
Adam Saepudin ◽  
Nurul Khumaida ◽  
Didy Sopandie ◽  
Dan Sintho Wahyuning Ardie

ABSTRACT<br /><br />Somatic embryo induction medium was reported to be genotype dependent for soybean. This study was aimed to obtain the optimum medium for embryo somatic induction and proliferation, and to regenerate somatic embryo of five soybean genotypes. Five soybean genotypes (Tanggamus, Anjasmoro, Yellow Biloxi, CG-22-10, and SP-10-4) were used in this study. The research was divided into four steps: (1) embryogenic callus induction of  five soybean genotypes, (2) embryogenic callus proliferation of five soybean genotypes, (3) optimation of embryo somatic induction on five soybean genotypes and (4) embryo somatic regeneration of five soybean genotypes. The induction experiment showed that based on number of embryogenic callus, the best somatic embryo-induction medium was 3% sucrose+ NAA 5 mg L-1+2,4-D 5 mg L-1+ Vitamin B5. Embryogenic callus number for each genotype tested was increased on proliferation media of 3% sukrosa + 2,4-D 5 mg L-1 + NAA 5 mg L-1+ Vit B5, and Yellow Biloxi gave the highest number of proliferated somatic embryos compared to other genotypes. Increasing number of globular somatic embryo of all genotypes was obtained from the optimation of somatic embryo induction media being used, and Tanggamus genotype gave the highest number of globular somatic embryo which followed by Yellow Biloxi genotype. Tanggamus and Yellow Biloxi genotypes were also successfully formed the four steps of somatic embryos (globular, heart, torpedo, and cotyledonary stages), but in regeneration medium of MS0 and media MS + sukrosa 10 g L-1 + GA3 2 mg L-1 + BAP 4 mg L-1 + Vit B5 only Tanggamus genotype was regenerated into plantlet.  <br /><br />Keywords: 2,4-D, NAA, somatic embryos, induction, proliferation<br /><br />


2014 ◽  
Vol 12 (1) ◽  
pp. 1-6 ◽  
Author(s):  
MN Hassan ◽  
MS Haque ◽  
MM Hassan ◽  
MS Haque

Genetic improvement of garlic through conventional breeding is very difficult due to sterile nature of its flower. Hence, an alternative system is desirable to induce genetic variation. Tissue culture could be a good opportunities and somatic embryogenesis is one of the potential techniques of tissue culture for in vitro regeneration of garlic plant. The successes and production of somatic embryo depends on several factors such as optimization of media components, genotypes and explant type. Therefore, in the present investigation, garlic root tips were used as explant for callus and somatic embryo induction under different plant growth regulator combination. It was found that MS+1.0 mg l-1 2,4-D was the most favorable (86.10% regeneration with 2.19 cm callus diameter) for callus induction. This concentration also induced and produced good quality somatic embryo. In addition, MS+2.0 mg l-1 Kinetin gave better regeneration of somatic embryo and yielded the highest number (4.670) and longest length (7.0 cm) of shoots per callus. The procedure used a single hormonal signal for callus and somatic embryo induction as well as hormone free medium for further development of plantlet. Besides, maximum duration for callus induction and somatic embryo production was 17 and 10.67 days respectively. Thus, it appears that the protocol is cheap and time bound and particularly useful for conducting experiment for genetic improvement of garlic. Furthermore, as the protocol is cost effective, it can be further tested for commercial feasibility. DOI: http://dx.doi.org/10.3329/jbau.v12i1.20747 J. Bangladesh Agril. Univ. 12(1): 1-6, June 2014


2021 ◽  
Author(s):  
Thiago Sanches Ornellas ◽  
Yohan Fritsche ◽  
Edison Cardona Medina ◽  
Miguel Pedro Guerra

Abstract Bamboos are an important worldwide non-timber forest product with current rising interest due to their environmentally friendly applications. Besides the consolidated uses of the sweet shoots and culms for structural uses, Dendrocalamus asper is an imposing ornamental bamboo for horticulture. The present work aimed to establish in vitro calli culture and plant regeneration through somatic embryogenesis starting from young inflorescences of the giant bamboo, D. asper. Pre-anthesis inflorescences were collected, disinfested, and subjected to callus induction on MS basal medium supplemented by 0 µM, 9 µM, 18 µM, 27 µM, and 36 µM of 2,4-D in combination with 9 µM of 2-iP or 9 µM Kin. The different obtained calli types were characterized and subcultured in 0 µM, 4.5 µM, 9 µM, and 18 µM of 2,4-D in combination with 9 µM of both cytokinins for multiplication and differentiation. Additionally, the explant incision and its inoculation orientation onto culture media were tested for callus induction improvement. The 2,4-D was essential for callus induction, and its combination with both cytokinins resulted in embryogenic callus induction and further somatic embryos regeneration. The subsequent reduction of this auxin to 4.5 µM resulted in somatic embryo maturation. Somatic embryos transferred to a plant growth regulator-free medium resulted in plantlet conversion. The present work showed the feasibility of using inflorescences as explants and the efficiency of using the 2-iP in combination with 2,4-D to callus induction and in vitro bamboo plant regeneration through somatic embryogenesis.


1996 ◽  
Vol 44 (4) ◽  
pp. 489 ◽  
Author(s):  
S Afsharsterle ◽  
ECK Pang ◽  
JS Brown ◽  
JF Kollmorgen

Immature embryos of seven accessions of Triticum tauschii (Coss.) Schmal. were used to produce embryogenic callus suitable for initiation of suspension cultures. Several modifications of Murashige and Skoog basal medium (MS) were evaluated for callus induction from scutellar tissues of embryos. Nodular, embryogenic calli were induced from all accessions when MS medium was supplemented with 2,4-dichlorophenoxyacetic acid (2,4-D) and a mixture of L-glutamine, L-asparagine and L-proline. Early differentiation of these embryogenic calli was overcome by substituting Dicamba for 2,4-D. Addition of 575 mg L-1 of L-proline gave a rapid increase in the production of nodular embryogenic callus in most of the accessions. Using this protocol, the embryogenic capacity of this type of callus was maintained for more than a year following further modification of the MS medium. A clear genotype dependency as well as media effects on the production of callus were observed.


Author(s):  
Muniappan V ◽  
Manivel P ◽  
Prabakaran V ◽  
Palanivel S ◽  
Parvathi S

Somatic embryogenesis was carried out epicotyl portion of the mature embryo/apical portion. The somatic embryo induction medium containing 2,4-D or NAA (10.0 to 50.0 mg/l). Of the two concentrations tested 2,4-D (30.0mg/l) recorded the highest percentage of response followed by NAA (30.0mg/l). But the highest number of somatic embryo were recorded in 30.0mg/l of 2,4-D followed by NAA. The apical portion of the mature embryo formed direct embryos without any intervention of callus. The maximum percentage of embryogenic cultures were noticed in 30.0mg/l of 2,4-D followed by NAA at 30.0mg/l. for the differentiation of somatic embryos, the embryogenic masses were transferred to medium without any growth regulator. The maximum number of somatic embryos per culture was recorded in 30 mg/l of 2,4-D followed by 30.0 mg/l of NAA. Keywords: Arachis hypogaea L.,Somatic Embryogenesis, 2,4-D and NAA


1970 ◽  
Vol 20 (2) ◽  
pp. 157-170 ◽  
Author(s):  
Richard M.S. Mulwa ◽  
Margaret M.A. Norton ◽  
Robert M. Skirvin

Abundant embryogenic callus was obtained from leaf and floral explants of "Chancellor" grape by continuous culture for 12 weeks on Nitsch and Nitsch basal medium supplemented with 9 μM 2, 4-D + 17 μM IASP + either 1 μM BA or 1 μM TDZ (ECIM) in darkness. They were successfully maintained by a five to six week subculture interval on NN medium containing 2 μM 2, 4-D + 0.2 μM TDZ + 4 μM IASP (LTMM). Near synchronous embryo developed from embryogenic callus on medium containing 10 μM IASP + 8 μM NOA + 1 μM TDZ + 1 μM ABA + 2.5 g/l AC (EDMM).  Individually separated somatic embryos were germinated on both NN and half strength of MS containing 0.5 μM BA + 0.025 μM NAA, respectively; normal plantlet conversion from embryos was low (35%).  Whole fruiting plants were obtained. Aberrant embryo development was characterized by failure to form functional shoot meristems following the initial cotyledon expansion during germination. These observations indicate that the embryo conversion stage of the regeneration is difficult and remains a limiting factor requiring more empirical experimentation for improvement in grape tissue culture.   Key words: Chancellor grape, Regeneration, Somatic embryogenesis   D.O.I. 10.3329/ptcb.v20i2.6895   Plant Tissue Cult. & Biotech. 20(2): 157-170, 2010 (December)


2017 ◽  
Vol 17 (1) ◽  
pp. 9
Author(s):  
Yosi Zendra Joni ◽  
Riry Prihatini ◽  
Darda Efendi ◽  
Ika Roostika

<p>Somatic embryogenesis is a technique for regenerating embryos derived from somatic cells of various plant species. This technique along with the utilization of plant growth regulator (PGR) might benefit for mass propagation and improvement of plant species through biotechnological tools. The study aimed to determine the effect of different plant growth regu-lators, namely 6-benzyladenine (BA) and thidiazuron (TDZ) on the embryogenic callus induction as well as casein hydrolysate and malt extract on the somatic embryo development of mangosteen. The explants used were in vitro young stems of mangosteen clone Leuwiliang. This study consisted of two experiments, namely induction of embryogenic callus and formation of somatic embryo. The first experiment was arranged as factorial in a completely randomized design with BA (0 and 0.7 mg l-1) as the first factor and TDZ (0, 0.1, 0.5 and 1.0 mg l-1) as the second factor. The second experiment consisted of four treatments, i.e. casein hydrolysate and malt extract at the rate of 500 and 1,000 mg l-1. The results showed that the best medium for embryogenic callus induction was MS supplemented with 0.1 mg l-1 TDZ, which resulted semifriable calli. Casein hydrolysate and malt extract could not induce the formation of somatic embryos. After two times subcultures on the same MS medium supplemented with 0.5 mg l-1 TDZ and 0.7 mg l-1 BA, a total of 33.8 somatic embryos per explant was induced. The successful somatic embryogenesis would support mangosteen breeding and in vitro mass propagation program.</p>


Aquilaria malaccensis Lam. and Aquilaria subintegra Ding Hou belong to the family of Thymelaeaceae which is commonly known as gaharu or agarwood. It is a commercially important tree and identified as a potential aromatic plant. The overwhelming responses in the lodging sector reduce gaharu species in the forest. Mass propagation through plant tissue culture technology will substitute this problem. The present study was conducted to investigate the embryogenic callus induction between these two species. The most optimum sterilization method for both species was sodium hypochlorite 5.0% which gave the highest percentage of aseptic culture (95%) with the absence of tissue browning. The leaves of both species were cultured on Murashige and Skoog, (1962) (MS) media supplemented with combination of various concentrations of 6-benzylaminopurine (BAP) (0.5, 1.0, 2.0 and 2.5 mg/L) and 2,4-dichlorophenoxyacetic acid (2, 4-D) (0.5, 1.0, 1.5 and 2.0 mg/L) and kept under dark condition. The explants produced embryogenic, white and compact callus at the end cut of the explants after two weeks of culture in all treatments. The highest frequency of embryogenic callus formation was observed in explants cultured on 2.0 mg/L BAP and 0.5 mg/L 2,4-D for both species. From the present study, the optimum sterilization technique and embryogenic callus induction for A. malaccensis Lam. and A. subintegra were established.


Sign in / Sign up

Export Citation Format

Share Document