scholarly journals Sparse Time–Frequency Representation for the Transient Signal Based on Low-Rank and Sparse Decomposition

Geophysics ◽  
2016 ◽  
Vol 81 (2) ◽  
pp. V117-V124 ◽  
Author(s):  
Mohammad Amir Nazari Siahsar ◽  
Saman Gholtashi ◽  
Amin Roshandel Kahoo ◽  
Hosein Marvi ◽  
Alireza Ahmadifard

Attenuation of random noise is a major concern in seismic data processing. This kind of noise is usually characterized by random oscillation in seismic data over the entire time and frequency. We introduced and evaluated a low-rank and sparse decomposition-based method for seismic random noise attenuation. The proposed method, which is a trace by trace algorithm, starts by transforming the seismic signal into a new sparse subspace using the synchrosqueezing transform. Then, the sparse time-frequency representation (TFR) matrix is decomposed into two parts: (a) a low-rank component and (b) a sparse component using bilateral random projection. Although seismic data are not exactly low-rank in the sparse TFR domain, they can be assumed as being of semi-low-rank or approximately low-rank type. Hence, we can recover the denoised seismic signal by minimizing the mixed [Formula: see text] norms’ objective function by considering the intrinsically semilow-rank property of the seismic data and sparsity feature of random noise in the sparse TFR domain. The proposed method was tested on synthetic and real data. In the synthetic case, the data were contaminated by random noise. Denoising was carried out by means of the [Formula: see text] classical singular spectrum analysis (SSA) and [Formula: see text] deconvolution method for comparison. The [Formula: see text] deconvolution and the classical [Formula: see text] SSA method failed to properly reduce the noise and to recover the desired signal. We have also tested the proposed method on a prestack real data set from an oil field in the southwest of Iran. Through synthetic and real tests, the proposed method is determined to be an effective, amplitude preserving, and robust tool that gives superior results over classical [Formula: see text] SSA as conventional algorithm for denoising seismic data.


2021 ◽  
Vol 11 (6) ◽  
pp. 2582
Author(s):  
Lucas M. Martinho ◽  
Alan C. Kubrusly ◽  
Nicolás Pérez ◽  
Jean Pierre von der Weid

The focused signal obtained by the time-reversal or the cross-correlation techniques of ultrasonic guided waves in plates changes when the medium is subject to strain, which can be used to monitor the medium strain level. In this paper, the sensitivity to strain of cross-correlated signals is enhanced by a post-processing filtering procedure aiming to preserve only strain-sensitive spectrum components. Two different strategies were adopted, based on the phase of either the Fourier transform or the short-time Fourier transform. Both use prior knowledge of the system impulse response at some strain level. The technique was evaluated in an aluminum plate, effectively providing up to twice higher sensitivity to strain. The sensitivity increase depends on a phase threshold parameter used in the filtering process. Its performance was assessed based on the sensitivity gain, the loss of energy concentration capability, and the value of the foreknown strain. Signals synthesized with the time–frequency representation, through the short-time Fourier transform, provided a better tradeoff between sensitivity gain and loss of energy concentration.


Author(s):  
Mathias Stefan Roeser ◽  
Nicolas Fezans

AbstractA flight test campaign for system identification is a costly and time-consuming task. Models derived from wind tunnel experiments and CFD calculations must be validated and/or updated with flight data to match the real aircraft stability and control characteristics. Classical maneuvers for system identification are mostly one-surface-at-a-time inputs and need to be performed several times at each flight condition. Various methods for defining very rich multi-axis maneuvers, for instance based on multisine/sum of sines signals, already exist. A new design method based on the wavelet transform allowing the definition of multi-axis inputs in the time-frequency domain has been developed. The compact representation chosen allows the user to define fairly complex maneuvers with very few parameters. This method is demonstrated using simulated flight test data from a high-quality Airbus A320 dynamic model. System identification is then performed with this data, and the results show that aerodynamic parameters can still be accurately estimated from these fairly simple multi-axis maneuvers.


Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1437
Author(s):  
Mahfoud Drouaz ◽  
Bruno Colicchio ◽  
Ali Moukadem ◽  
Alain Dieterlen ◽  
Djafar Ould-Abdeslam

A crucial step in nonintrusive load monitoring (NILM) is feature extraction, which consists of signal processing techniques to extract features from voltage and current signals. This paper presents a new time-frequency feature based on Stockwell transform. The extracted features aim to describe the shape of the current transient signal by applying an energy measure on the fundamental and the harmonic frequency voices. In order to validate the proposed methodology, classical machine learning tools are applied (k-NN and decision tree classifiers) on two existing datasets (Controlled On/Off Loads Library (COOLL) and Home Equipment Laboratory Dataset (HELD1)). The classification rates achieved are clearly higher than that for other related studies in the literature, with 99.52% and 96.92% classification rates for the COOLL and HELD1 datasets, respectively.


Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3725
Author(s):  
Paweł Zimroz ◽  
Paweł Trybała ◽  
Adam Wróblewski ◽  
Mateusz Góralczyk ◽  
Jarosław Szrek ◽  
...  

The possibility of the application of an unmanned aerial vehicle (UAV) in search and rescue activities in a deep underground mine has been investigated. In the presented case study, a UAV is searching for a lost or injured human who is able to call for help but is not able to move or use any communication device. A UAV capturing acoustic data while flying through underground corridors is used. The acoustic signal is very noisy since during the flight the UAV contributes high-energetic emission. The main goal of the paper is to present an automatic signal processing procedure for detection of a specific sound (supposed to contain voice activity) in presence of heavy, time-varying noise from UAV. The proposed acoustic signal processing technique is based on time-frequency representation and Euclidean distance measurement between reference spectrum (UAV noise only) and captured data. As both the UAV and “injured” person were equipped with synchronized microphones during the experiment, validation has been performed. Two experiments carried out in lab conditions, as well as one in an underground mine, provided very satisfactory results.


2020 ◽  
Vol 523 ◽  
pp. 14-37 ◽  
Author(s):  
Huafeng Li ◽  
Xiaoge He ◽  
Zhengtao Yu ◽  
Jiebo Luo

Sign in / Sign up

Export Citation Format

Share Document