Organic nutrient solution for hydroponic system

2021 ◽  
Author(s):  
Lakma Upendri ◽  
Brintha Karunarathna
Agronomy ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1484
Author(s):  
Maha Ezziddine ◽  
Helge Liltved ◽  
Randi Seljåsen

The aim of this study was to demonstrate how aquacultural sludge can be processed and utilized as an organic nutrient solution (ONS) for hydroponic lettuce production. By using a previous developed method, approximately 80% of the processed sludge was reclaimed as a clear, nutrient-rich solution. The performance of the recovered nutrient solution on lettuce growth was assessed in a nutrient film hydroponic system. The results were compared to the results obtained using a conventional nutrient solution (CNS). Yield, fresh weight, water consumption, and nutrient and heavy metal content in leaf tissue were measured. In spite of a 16% lower average fresh weight obtained in ONS compared to the weight obtained in CNS, there was no statistical difference of the yield of lettuce among the two nutrient solutions. After the cultivation period, 90% of the lettuce heads grown in ONS exceeded the marked weight of 150 g. Foliar analysis revealed a similar or higher content of all nutrients, except of magnesium and molybdenum in the leaves of lettuce grown in the ONS compared to lettuce grown in the CNS. This study shows that nutrients recovered from aquacultural sludge can be utilized as fertilizer, thereby reducing the dependency on mineral fertilizer in hydroponic and aquaponic systems.


2016 ◽  
Vol 29 (3) ◽  
pp. 656-664 ◽  
Author(s):  
HAMMADY RAMALHO E SOARES ◽  
ÊNIO FARIAS DE FRANÇA E SILVA ◽  
GERÔNIMO FERREIRA DA SILVA ◽  
RAQUELE MENDES DE LIRA ◽  
RAPHAELA REVORÊDO BEZERRA

ABSTRACT Water availability in the Brazilian semiarid is restricted and often the only water source available has high salt concentrations. Hydroponics allows using these waters for production of various crops, including vegetables, however, the water salinity can cause nutritional disorders. Thus, two experiments were conducted in a greenhouse at the Department of Agricultural Engineering of the Federal Rural University of Pernambuco, to evaluate the effects of salinity on the mineral nutrition of crisphead lettuce, cultivar Taina, in a hydroponic system (Nutrient Film Technique), using brackish water in the nutrient solution, which was prepared by adding NaCl to the local water (0.2 dS m-1). A randomized blocks experimental design was used in both experiments. The treatments consisted of water of different salinity levels (0.2, 1.2, 2.2, 3.2, 4.2 and 5.2 dS m-1) with four replications, totaling 24 plots for each experiment. The water added to compensate for the water - depth loss due to evapotranspiration (WCET) was the brackish water of each treatment in Experiment I and the local water without modifications in Experiment II. The increase in the salinity of the water used for the nutrient solution preparation reduced the foliar phosphorus and potassium contents and increased the chloride and sodium contents, regardless of the WCET. Foliar nitrogen, calcium, magnesium and sulfur contents were not affected by increasing the water salinity used for the nutrient solution preparation.


2013 ◽  
Vol 46 (4) ◽  
pp. 281-286 ◽  
Author(s):  
Midori Hikashi ◽  
Katsumi Ishikawa ◽  
Makito Mori ◽  
Daisuke Yasutake

2020 ◽  
Vol 38 (1) ◽  
pp. 47-52 ◽  
Author(s):  
Rodolfo De la Rosa-Rodríguez ◽  
Alfredo Lara-Herrera ◽  
Libia Iris Trejo-Téllez ◽  
Luz Evelia Padilla-Bernal ◽  
Luis Octavio Solis-Sánchez ◽  
...  

ABSTRACT The amount of water and fertilizers used in the production of vegetables, specifically tomatoes, is high. This study was carried out to determine water and fertilizers use efficiency in closed and open hydroponic systems for tomato production under greenhouse conditions. Two treatments with eight replications were assessed; each replication consisted of 67 pots with two plants each. One treatment was a closed hydroponic system (with nutrient solution recirculation), and the other was an open hydroponic system (with non-recirculating nutrient solution). We quantified the amounts of water and fertilizers applied, as well as the losses (drained nutrient solution), in the two treatments during the entire cycle of tomato. In the nutrient solution (NS) we also measured electric conductivity (EC), pH, volume applied, and volume drained, and total weight of fruits (25 pickings). There were no significant differences between the two treatments on fruit production. Water use efficiency was 59.53 kg/fruit/m3 for the closed system and 46.03 kg/fruit/m3 in the open system. In comparison to the open system, the closed system produced 13.50 kg more fruit per cubic meter of water, while 10.31 grams less fertilizers per kilogram of fruit produced were only applied. Water and fertilizers use efficiency were higher in the closed system, by 22.68% and 22.69%, respectively. More efficiency was obtained in the closed system, regarding the open system. We concluded that the closed system is a good alternative to produce tomato and preserve the resources involved in the process (like water and fertilizers), thus reducing pollution.


2020 ◽  
Vol 44 ◽  
Author(s):  
Carlos Donato da Silva Souza ◽  
Geronimo Ferreira da Silva ◽  
Sirleide Maria de Menezes ◽  
José Edson Florentino de Morais ◽  
José Amilton Santos Júnior ◽  
...  

ABSTRACT Cultivation using brackish waters can result in nutritional and metabolic imbalances in several plant species, consequently reducing the production of dry matter (DM) and accumulation of toxic ions (Na+ and/or Cl-) in plants. We evaluated the DM production, and nutrient and inorganic solute (Na+ and Cl-) content in green onion plants (cv. Todo Ano Evergreen - Nebuka) under different levels of nutrient solution salinity in combination with circulation frequencies of this solution. Two experiments were conducted in a hydroponic system, using a completely randomized design, in a 6 × 2 factorial scheme, with five replicates: six levels of nutrient solution salinity (1.5, 3.0, 4.5, 6.0, 7.5, and 9.0 dS m-1) and two solution circulation frequencies (twice and thrice a day). In Experiment I, the evapotranspired depth was replaced using brackish water that was used to prepare each of the salinity levels (used exclusively), whereas in Experiment II, brackish water was used only to prepare each of the salinity levels and public water was used (electrical conductivity [ECw] = 0.12 dS m-1) for replacement in all treatments. The increase in the nutrient solution salinity reduced the production of DM and accumulation of nutrients; the reductions were more pronounced when brackish waters were used exclusively (Experiment I). However, the circulation of solutions thrice a day resulted in the harmful effects of the salinity effect. Replacing the evapotranspirated blade with water supply (Experiment II) mitigated the deleterious effects of salinity. Moreover, three circulations of the nutrient solution daily resulted in lower accumulation of inorganic Na+ and Cl- solutes and increased accumulation of nutrients N, P, K+, Ca2+, Mg2+, and S in the culture.


2020 ◽  
Vol 38 (1) ◽  
pp. 21-26
Author(s):  
Cleiton Dalastra ◽  
Marcelo CM Teixeira Filho ◽  
Marcelo R da Silva ◽  
Thiago AR Nogueira ◽  
Guilherme Carlos Fernandes

ABSTRACT The optimum flow rate of nutrient solution in hydroponic system can better nourish the crops, allowing healthy and faster growth of lettuce. However, flow also interferes with electric power consumption, so further researches are necessary, mainly on the effect of flow rate, nutrient accumulation and lettuce production. In this context, the aim of this study was to evaluate nutrition and production of head lettuce in relation to the nutrient solution flow in NFT hydroponic system. The treatments consisted of nutrient solution application at the flow rates 0.5; 1; 2, and 4 liters per minute in each cultivation channel. Five replicates per treatment consisted of 15 plants each. The flow in hydroponic systems to produce head lettuce alters the technical performance of the crop. Due to the greater nutrient accumulation in shoot and use efficiency of these elements, the highest production (g/plant) of head lettuce was obtained with a flow rate of 1 L/min of the nutrient solution.


Sign in / Sign up

Export Citation Format

Share Document