scholarly journals Energy, Momentum, Mass and Velocity of a Moving Body

Author(s):  
Sergey G. Fedosin

In the weak-field approximation of covariant theory of gravitation the problem of 4/3 is formulated for internal and external gravitational fields of a body in the form of a ball. The dependence of the energy and the mass of the moving substance on the energy of field accompanying the substance, as well as the dependence on the characteristic size of the volume occupied by the substance are described. Additives in the energy and the momentum of the body, defined by energy and momentum of the gravitational and electromagnetic fields associated with the body are explicitly calculated. The conclusion is made that the energy and the mass of the body can be described by the energy of ordinary and strong gravitation, and through the energies of electromagnetic fields of particles that compose the body.

2014 ◽  
Vol 92 (10) ◽  
pp. 1074-1081
Author(s):  
Sergey G. Fedosin

In the weak-field approximation of the covariant theory of gravitation the 4/3 problem is formulated for internal and external gravitational fields of a body in the form of a uniform ball. The dependence of the energy and the mass of the moving body on the energy of the field accompanying the body, as well as the dependence on the characteristic size of the body are described. Additions in the energy and the momentum of the system, defined by the energy and momentum of the gravitational and electromagnetic fields, associated with the body, are explicitly calculated. The conclusion is made that the energy and the mass of the system can be described through the energy of ordinary and strong gravitation and through the energies of electromagnetic fields of particles that compose the body.


The author's generalized procedure for putting a theory into Hamiltonian form is applied to Einstein’s theory of gravitation. It is shown that one can make a change in the action density, not affecting the equations of motion, which causes four of the ten degrees of freedom associated with the ten g µν to drop out of the Hamiltonian formalism. This simplification can be achieved only at the expense of abandoning four-dimensional symmetry. In the weak field approximation one can make a Fourier resolution of the field quantities, and one then gets a clean separation of those degrees of freedom whose variables depend on the system of co-ordinates from those whose variables do not. There are four of the former and two of the latter for each Fourier component. The two latter correspond to gravitational waves with two independent states of polarization. One of the four former is responsible for the Newtonian attraction between masses and also gives a negative gravitational self-energy for each mass.


1967 ◽  
Vol 22 (9) ◽  
pp. 1336-1341 ◽  
Author(s):  
Dieter R. Brill

The rotation of the local inertial frames induced by a rotating shell of mass is calculated in the framework of P. Jordan’s “extended theory of gravitation”. As a special case, the corresponding results are obtained for Brans and Dicke’s “scalar-tensor” theory. In the weak field approximation the result is the same as the Lense-Thirring effect of General Relativity, except for a factor depending on the coupling constant of the scalar field. The strong field limit in which the inertial frame is completely dragged along by the rotating shell is investigated. In particular it is shown that this limit of perfect dragging occurs in certain cosmological models whenever the density of the rest of the matter in the universe tends to zero. This result is interpreted as a manifestation of Mach’s principle in the extended theory of gravitation.


2014 ◽  
Vol 1 ◽  
pp. 41-46 ◽  
Author(s):  
Sergey G. Fedosin

The metric outside a charged body is calculated. As part of the given approach it is shown that the gravitational and electromagnetic fields are equally involved in the formation of the metric tensor components. Andthe contribution of fields in the metric is proportional to the energy of these fields. From equations for the metric it follows that the metric tensor components are determined up to two constants.


2020 ◽  
Vol 80 (7) ◽  
Author(s):  
David Pérez Carlos ◽  
Augusto Espinoza ◽  
Andrew Chubykalo

Abstract The purpose of this paper is to get second-order gravitational equations, a correction made to Jefimenko’s linear gravitational equations. These linear equations were first proposed by Oliver Heaviside in [1], making an analogy between the laws of electromagnetism and gravitation. To achieve our goal, we will use perturbation methods on Einstein field equations. It should be emphasized that the resulting system of equations can also be derived from Logunov’s non-linear gravitational equations, but with different physical interpretation, for while in the former gravitation is considered as a deformation of space-time as we can see in [2–5], in the latter gravitation is considered as a physical tensor field in the Minkowski space-time (as in [6–8]). In Jefimenko’s theory of gravitation, exposed in [9, 10], there are two kinds of gravitational fields, the ordinary gravitational field, due to the presence of masses, at rest, or in motion and other field called Heaviside field due to and acts only on moving masses. The Heaviside field is known in general relativity as Lense-Thirring effect or gravitomagnetism (The Heaviside field is the gravitational analogous of the magnetic field in the electromagnetic theory, its existence was proved employing the Gravity Probe B launched by NASA (See, for example, [11, 12]). It is a type of gravitational induction), interpreted as a distortion of space-time due to the motion of mass distributions, (see, for example [13, 14]). Here, we will present our second-order Jefimenko equations for gravitation and its solutions.


2012 ◽  
Vol 90 (11) ◽  
pp. 1077-1130 ◽  
Author(s):  
David Alba ◽  
Luca Lusanna

In this second paper we define a post-minkowskian (PM) weak field approximation leading to a linearization of the Hamilton equations of Arnowitt–Deser–Misner (ADM) tetrad gravity in the York canonical basis in a family of nonharmonic 3-orthogonal Schwinger time gauges. The York time 3K (the relativistic inertial gauge variable, not existing in newtonian gravity, parametrizing the family, and connected to the freedom in clock synchronization, i.e., to the definition of the the shape of the instantaneous 3-spaces) is set equal to an arbitrary numerical function. The matter are considered point particles, with a Grassmann regularization of self-energies, and the electromagnetic field in the radiation gauge: an ultraviolet cutoff allows a consistent linearization, which is shown to be the lowest order of a hamiltonian PM expansion. We solve the constraints and the Hamilton equations for the tidal variables and we find PM gravitational waves with asymptotic background (and the correct quadrupole emission formula) propagating on dynamically determined non-euclidean 3-spaces. The conserved ADM energy and the Grassmann regularization of self-energies imply the correct energy balance. A generalized transverse–traceless gauge can be identified and the main tools for the detection of gravitational waves are reproduced in these nonharmonic gauges. In conclusion, we get a PM solution for the gravitational field and we identify a class of PM Einstein space–times, which will be studied in more detail in a third paper together with the PM equations of motion for the particles and their post-newtonian expansion (but in the absence of the electromagnetic field). Finally we make a discussion on the gauge problem in general relativity to understand which type of experimental observations may lead to a preferred choice for the inertial gauge variable 3K in PM space–times. In the third paper we will show that this choice is connected with the problem of dark matter.


1977 ◽  
Vol 16 (6) ◽  
pp. 1643-1663 ◽  
Author(s):  
V. Canuto ◽  
P. J. Adams ◽  
S.-H. Hsieh ◽  
E. Tsiang

2018 ◽  
Vol 4 (12) ◽  
pp. eaau6252 ◽  
Author(s):  
Yao Guo ◽  
Weixuan Zhang ◽  
Hanchun Wu ◽  
Junfeng Han ◽  
Yongliang Zhang ◽  
...  

The edges of layered materials have unique properties that substantially differ from the body regions. In this work, we perform a systematic Raman study of the edges of various layered materials (MoS2, WS2, WSe2, PtS2, and black phosphorus). The Raman spectra of the edges feature newly observed forbidden Raman modes, which are originally undetectable from the body region. By selecting the edge type and the polarization directions of the incident and scattered light, all forbidden Raman modes are distinctly detected. Optical simulations show that the edges of layered materials drastically distort the electromagnetic fields of both the incident and scattered light, so that the light interacts with the edges in a distinct way, which differs from its interactions with the body regions.


Sign in / Sign up

Export Citation Format

Share Document