scholarly journals Solar Ray Tracing Analysis to Determine Energy Availability in a CPC Designed for Use as a Residential Water Heater

Author(s):  
Miguel Terrón-Hernández ◽  
Manuel I. Peña-Cruz ◽  
J. G. Carrillo ◽  
Ulises Diego-Ayala ◽  
Vicente Flores

Compound parabolic concentrators are relevant systems used in solar thermal technology. With adequate tailoring, they can be used as an efficient and low-cost alternative in residential water applications. This work presents a simulation study using a ray tracing methodology. With this technique we simulate the interaction between solar rays and solar concentrator to quantify the amount of energy that impinges on the receiver at a particular time. Energy availability is evaluated in a comparison of two configurations: stationary at 21° throughout the year and multi position setup; tilted with respect to the horizontal depending on three seasonal positions: 0° for summer, 16° for spring / autumn and 32° for winter, with the objective of increasing the amount of available energy in each season. The fact that a tracking system can be dispensed with also represents an economical option for the proposed application. The results showed that at 21°, the proposed system works satisfactorily; however, by carrying out the selected angular adjustments, the overall energy availability increased by 22%, resulting in a more efficient option. The methodology developed herein proved to be a valuable tool for prototype design and performance evaluation.

Energies ◽  
2018 ◽  
Vol 11 (2) ◽  
pp. 291 ◽  
Author(s):  
Miguel Terrón-Hernández ◽  
Manuel Peña-Cruz ◽  
Jose Carrillo ◽  
Ulises Diego-Ayala ◽  
Vicente Flores

2020 ◽  
Author(s):  
Orlando Soares de Santana Filho ◽  
Carlos Henrique Mota Martins ◽  
Thiago Henrique Felix C. Ribeiro Conceição ◽  
Alex Vinicius dos Reis Freitas Silva ◽  
Adriano Honorato Braga ◽  
...  

Solar energy is a renewable and inexhaustible source, besidescausing damage to nature, being clean and sustainable.Transform the electromagnetic radiation emitted by the Sunelectrical energy are used solar panels. In order to improveefficiency and performance of this capture, a low-cost wasbuilt, a single-axis solar tracking system for photovoltaicpanels. The solution uses the automation Arduino UNO R3,open hardware, two photosensitive sensors LDR GL-5528, inaddition to a servo motor capable of moving the surface of aphotovoltaic plate according to the detection of the highestincidence of light. The circuit and its components wereprogrammed using the Arduino IDE software, version 1.8.11.As a result, it was possible to follow the movement of thesun, differing from a static panel, thus ensuring greater sunshineon the solar plate, as a result of this traceablecontrol prototype.


Author(s):  
Hachimenum Nyebuchi Amadi ◽  
Sebastian Gutierrez

Most rural dwellers in developing countries do not have access to adequate and regular supply of energy and most of these estimated two billion people are poor with no sustainable means of livelihood and therefore rely on wood fuel for their cooking and heating needs. And due to lack of energy, including electricity, socio-economic development is either absent or at abysmally low level. To foster rural development and improved living conditions among this populace, there is need for a reliable, low cost and environmentally risk-free source of energy. This work designed, implemented and evaluated the performance of a dual axis solar tracking system (DATS) using light dependent resistor (LDR) sensors, direct current (DC) motors and microcontroller to make it capable of uninterruptible electricity supply for rural applications. Results of the experiment show that the proposed system is more cost-effective and produces 31.4 % more energy than the single axis tracking system (SATS) and 67.9 % more than the fixed PV panel system (FPPS). Owing to the unique design of the proposed tracking system, solar energy can be tracked and stored continuously so that there is adequate electricity for the consuming population at all times. Though tested on a rural community in Abia State, Nigeria, the proposed system can be adapted to rural communities anywhere in the world.  


Author(s):  
José Capmany ◽  
Daniel Pérez

Programmable Integrated Photonics (PIP) is a new paradigm that aims at designing common integrated optical hardware configurations, which by suitable programming can implement a variety of functionalities that, in turn, can be exploited as basic operations in many application fields. Programmability enables by means of external control signals both chip reconfiguration for multifunction operation as well as chip stabilization against non-ideal operation due to fluctuations in environmental conditions and fabrication errors. Programming also allows activating parts of the chip, which are not essential for the implementation of a given functionality but can be of help in reducing noise levels through the diversion of undesired reflections. After some years where the Application Specific Photonic Integrated Circuit (ASPIC) paradigm has completely dominated the field of integrated optics, there is an increasing interest in PIP justified by the surge of a number of emerging applications that are and will be calling for true flexibility, reconfigurability as well as low-cost, compact and low-power consuming devices. This book aims to provide a comprehensive introduction to this emergent field covering aspects that range from the basic aspects of technologies and building photonic component blocks to the design alternatives and principles of complex programmable photonics circuits, their limiting factors, techniques for characterization and performance monitoring/control and their salient applications both in the classical as well as in the quantum information fields. The book concentrates and focuses mainly on the distinctive features of programmable photonics as compared to more traditional ASPIC approaches.


1987 ◽  
Vol 14 (3) ◽  
pp. 134-140 ◽  
Author(s):  
K.A. Clarke

Practical classes in neurophysiology reinforce and complement the theoretical background in a number of ways, including demonstration of concepts, practice in planning and performance of experiments, and the production and maintenance of viable neural preparations. The balance of teaching objectives will depend upon the particular group of students involved. A technique is described which allows the embedding of real compound action potentials from one of the most basic introductory neurophysiology experiments—frog sciatic nerve, into interactive programs for student use. These retain all the elements of the “real experiment” in terms of appearance, presentation, experimental management and measurement by the student. Laboratory reports by the students show that the experiments are carefully and enthusiastically performed and the material is well absorbed. Three groups of student derive most benefit from their use. First, students whose future careers will not involve animal experiments do not spend time developing dissecting skills they will not use, but more time fulfilling the other teaching objectives. Second, relatively inexperienced students, struggling to produce viable neural material and master complicated laboratory equipment, who are often left with little time or motivation to take accurate readings or ponder upon neurophysiological concepts. Third, students in institutions where neurophysiology is taught with difficulty because of the high cost of equipment and lack of specific expertise, may well have access to a low cost general purpose microcomputer system.


2021 ◽  
Vol 11 (6) ◽  
pp. 2535
Author(s):  
Bruno E. Silva ◽  
Ramiro S. Barbosa

In this article, we designed and implemented neural controllers to control a nonlinear and unstable magnetic levitation system composed of an electromagnet and a magnetic disk. The objective was to evaluate the implementation and performance of neural control algorithms in a low-cost hardware. In a first phase, we designed two classical controllers with the objective to provide the training data for the neural controllers. After, we identified several neural models of the levitation system using Nonlinear AutoRegressive eXogenous (NARX)-type neural networks that were used to emulate the forward dynamics of the system. Finally, we designed and implemented three neural control structures: the inverse controller, the internal model controller, and the model reference controller for the control of the levitation system. The neural controllers were tested on a low-cost Arduino control platform through MATLAB/Simulink. The experimental results proved the good performance of the neural controllers.


Sign in / Sign up

Export Citation Format

Share Document