scholarly journals Characterization of Porous Phosphate Coatings Created on CP Titanium Grade 2 Enriched with Calcium, Magnesium, Zinc and Copper by Plasma Electrolytic Oxidation

Author(s):  
Krzysztof Rokosz ◽  
Tadeusz Hryniewicz ◽  
Steinar Raaen ◽  
Sofia Gaiaschi ◽  
Patrick Chapon ◽  
...  

In the paper, the effect of voltage increasing (from 500 VDC up to 650 VDC) on the structure and chemical composition of porous coating on titanium made by Plasma Electrolytic Oxidation, is presented. In the present paper, phosphates based coatings enriched with calcium, magnesium, zinc and copper in electrolyte based on 1 L of 85% concentrated H3PO4 with additions of Ca(NO3)2·4H2O, and Mg(NO3)2∙6H2O, and Zn(NO3)2∙6H2O, and Cu(NO3)2∙3H2O, are described. The morphology, chemical and phase composition, are evaluated using SEM, EDS, XRD, XPS, GDOES. Based on all the analyses, it was found out that the PEO coatings are porous and enriched with calcium, magnesium, zinc and copper. They consist mainly of the amorphous phase, which is more visible for higher voltages, and it is correlated with the increasing of the total PEO coating thickness (the higher the voltage, the thicker the PEO coating). However, for 650 VDC an amorphous phase and titanium substrate was also recorded with a signal from Ti2P2O7 crystalline, that was not observed for lower voltages. It was also found out that all the obtained coatings may be divided in three sub-layers, i.e. porous, semiporous, and transition one.

Metals ◽  
2018 ◽  
Vol 8 (6) ◽  
pp. 411 ◽  
Author(s):  
Krzysztof Rokosz ◽  
Tadeusz Hryniewicz ◽  
Wojciech Kacalak ◽  
Katarzyna Tandecka ◽  
Steinar Raaen ◽  
...  

Metals ◽  
2018 ◽  
Vol 8 (2) ◽  
pp. 112 ◽  
Author(s):  
Krzysztof Rokosz ◽  
Tadeusz Hryniewicz ◽  
Sofia Gaiaschi ◽  
Patrick Chapon ◽  
Steinar Raaen ◽  
...  

Materials ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 3838 ◽  
Author(s):  
Krzysztof Rokosz ◽  
Tadeusz Hryniewicz ◽  
Steinar Raaen ◽  
Sofia Gaiaschi ◽  
Patrick Chapon ◽  
...  

Coatings enriched with zinc and copper as well as calcium or magnesium, fabricated on titanium substrate by Plasma Electrolytic Oxidation (PEO) under AC conditions (two cathodic voltages, i.e., −35 or −135 V, and anodic voltage of +400 V), were investigated. In all experiments, the electrolytes were based on concentrated orthophosphoric acid (85 wt%) and zinc, copper, calcium and/or magnesium nitrates. It was found that the introduced calcium and magnesium were in the ranges 5.0–5.4 at% and 5.6–6.5 at%, respectively, while the zinc and copper amounts were in the range of 0.3–0.6 at%. Additionally, it was noted that the metals of the block S (Ca and Mg) could be incorporated into the structure about 13 times more than metals of the transition group (Zn and Cu). The incorporated metals (from the electrolyte) into the top-layer of PEO phosphate coatings were on their first (Cu+) or second (Cu2+, Ca2+ and Mg2+) oxidation states. The crystalline phases (TiO and Ti3O) were detected only in coatings fabricated at cathodic voltage of −135 V. It has also been pointed that fabricated porous calcium–phosphate coatings enriched with biocompatible magnesium as well as with antibacterial zinc and copper are dedicated mainly to medical applications. However, their use for other applications (e.g., catalysis and photocatalysis) after additional functionalizations is not excluded.


2017 ◽  
Vol 17 (4) ◽  
pp. 55-67 ◽  
Author(s):  
K. Rokosz ◽  
T. Hryniewicz ◽  
K. Pietrzak ◽  
P. Sadlak ◽  
J. Valíček

Abstract The purpose of this work is to produce and characterize (chemical composition and roughness parameters) porous coatings enriched in calcium and phosphorus on the titanium (CP Titanium Grade 2) by plasma electrolytic oxidation. As an electrolyte, a mixture of phosphoric acid H3PO4 and calcium nitrate Ca(NO3)2·4H2O was used. Based on obtained EDS and roughness results of PEO coatings, the effect of PEO voltages on the chemical composition and surface roughness of porous coatings was determined. With voltage increasing from 450 V to 650 V, the calcium in PEO coatings obtained in freshly prepared electrolyte was also found to increase. In addition, the Ca/P ratio increased linearly with voltage increasing according to the formula Ca/P = 0.035·U+0.176 (by wt%) and Ca/P = 0.03·U+0.13 (by at%). It was also noticed that the surface roughness increases with the voltage increasing, what is related to the change in coating porosity, i.e. the higher is the surface roughness, the bigger are pores sizes obtained.


Author(s):  
Tatiana S. Zaporozhets ◽  
Tatiana P. Smolina ◽  
Anna K. Gazha ◽  
Artyom V. Puz ◽  
Sergeiy. L. Sinebryukhov ◽  
...  

Current strategies for developing the biomaterials suggest passive modulation of osteoinductive and osteoconductive properties of the implant surface through a change in their physical and chemical parameters. Also, the osseointegration of implant depends on the reaction of the immune system, the severity of which is determined by physical and chemical properties of the material and the morphological features of the coating. In this paper, the plasma electrolytic oxidation (PEO) method for the formation of biologically active compositional corrosion resistant calcium phosphate coatings on titanium BT1-0 and magnesium alloy MA8, designed for bone bioengineering was used. Bioactive PEO coatings were additionally treated with superdispersed polytetrafluoroethylene (SPTFE) in order to improve anti-corrosion properties. The cellular and molecular aspects of immunological compatibility of bioactive calcium phosphate coatings formed on titanium and magnesium alloys by promising technology of plasma electrolytic oxidation and intended for bone tissue bioengineering were studied. It is shown that PEO coatings formed on titanium and magnesium induce an activation of human peripheral blood leukocytes in vitro, associated with increased expression of activation of molecules of CD69, CD38, CD11b on the cell membranes while shedding L-selectin (CD62L). Influence of coating process technologies on the intensity of the activation processes was established. Contact cells with calcium-phosphate PEO coatings formed on titanium and magnesium alloys induced a less pronounced activation in comparison with the untreated implants. The minimal reaction of the cells of the innate immunity was observed at using a composite of PEO coatings with SPTFE, obtained by electrophoretic deposition. The composite coating on magnesium alloys induces response of the cells of the innate immunity, comparable with the response to the coatings on titanium alloys. On the whole, immunological characteristics of the PEO coatings on titanium BT1-0 and magnesium alloy of MA8 demonstrate possibility of development of materials and wares for implant surgery, including bioresorbable alloys on magnesium base. For citation:Zaporozhets T.S., Puz A.V., Sinebryukhov S.L., Gnedenkov S.V., Smolina T.P., Gazha A.K. Comparative analysis of immunological compatibility of bioactive calcium phosphate coatings on titanium and magnesium alloys. Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol. 2017. V. 60. N 2. P. 45-51.


Nanomaterials ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1375
Author(s):  
Soumya Sikdar ◽  
Pramod V. Menezes ◽  
Raven Maccione ◽  
Timo Jacob ◽  
Pradeep L. Menezes

Plasma electrolytic oxidation (PEO) is a novel surface treatment process to produce thick, dense metal oxide coatings, especially on light metals, primarily to improve their wear and corrosion resistance. The coating manufactured from the PEO process is relatively superior to normal anodic oxidation. It is widely employed in the fields of mechanical, petrochemical, and biomedical industries, to name a few. Several investigations have been carried out to study the coating performance developed through the PEO process in the past. This review attempts to summarize and explain some of the fundamental aspects of the PEO process, mechanism of coating formation, the processing conditions that impact the process, the main characteristics of the process, the microstructures evolved in the coating, the mechanical and tribological properties of the coating, and the influence of environmental conditions on the coating process. Recently, the PEO process has also been employed to produce nanocomposite coatings by incorporating nanoparticles in the electrolyte. This review also narrates some of the recent developments in the field of nanocomposite coatings with examples and their applications. Additionally, some of the applications of the PEO coatings have been demonstrated. Moreover, the significance of the PEO process, its current trends, and its scope of future work are highlighted.


Coatings ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 401
Author(s):  
Ruzil Farrakhov ◽  
Olga Melnichuk ◽  
Evgeny Parfenov ◽  
Veta Mukaeva ◽  
Arseniy Raab ◽  
...  

The paper compares the coatings produced by plasma electrolytic oxidation (PEO) on commercially pure titanium and a novel superelastic alloy Ti-18Zr-15Nb (at. %) for implant applications. The PEO coatings were produced on both alloys in the identical pulsed bipolar regime. The properties of the coatings were examined using scanning electron microscopy (SEM), X-ray diffraction (XRD), and energy-dispersive X-ray spectroscopy (EDX), potentiodynamic polarization (PDP), and electrochemical impedance spectroscopy (EIS). The PEO process kinetics was modeled based on the Avrami theorem and Cottrell equation using a relaxation method. The resultant coatings contain TiO2, for both alloys, and NbO2, Nb2O5, ZrO2 for Ti-18Zr-15Nb alloy. The coating on the Ti-18Zr-15Nb alloy has a higher thickness, porosity, and roughness compared to that on cp-Ti. The values of the kinetic coefficients of the PEO process—higher diffusion coefficient and lower time constant for the processing of Ti-18Zr-15Nb—explain this effect. According to the electrochemical studies, PEO coatings on Ti-18Zr-15Nb alloy provide better corrosion protection. Higher corrosion resistance, porosity, and roughness contribute to better biocompatibility of the PEO coating on Ti-18Zr-15Nb alloy compared to cp-Ti.


2017 ◽  
Vol 17 (2) ◽  
pp. 41-54 ◽  
Author(s):  
K. Rokosz ◽  
T. Hryniewicz ◽  
K. Pietrzak ◽  
W. Malorny

AbstractThe SEM and EDS results of porous coatings formed on pure titanium by Plasma Electrolytic Oxidation (Micro Arc Oxidation) under DC regime of voltage in the electrolytes containing of 500 g zinc nitrate Zn(NO3)2·6H2O in 1000 mL of concentrated phosphoric acid H3PO4at three voltages, i.e. 450 V, 550 V, 650 V for 3 minutes, are presented. The PEO coatings with pores, which have different shapes and the diameters, consist mainly of phosphorus, titanium and zinc. The maximum of zinc-to-phosphorus (Zn/P) ratio was found for treatment at 650 V and it equals 0.43 (wt%) | 0.20 (at%), while the minimum of that coefficient was recorded for the voltage of 450 V and equaling 0.26 (wt%) | 0.12 (at%). Performed studies have shown a possible way to form the porous coatings enriched with zinc by Plasma Electrolytic Oxidation in electrolyte containing concentrated phosphoric acid H3PO4with zinc nitrate Zn(NO3)2·6H2O.


Sign in / Sign up

Export Citation Format

Share Document