scholarly journals Identification of Nanocellulose Retention Characteristics in Porous Media

Author(s):  
Reidun C. Aadland ◽  
Carter J. Dziuba ◽  
Ellinor B. Heggset ◽  
Kristin Syverud ◽  
Ole Torsæter ◽  
...  

The application of nanotechnology to the petroleum industry has sparked recent interest to increase oil recovery while reducing environmental impact. Nanocellulose is an emerging nanoparticle that is derived from trees and may provide an environmentally friendly alternative to current enhanced oil recovery (EOR) technologies. However, before nanocellulose can be applied as an EOR technique, further understanding of its transport behavior and retention in porous media is required. The research documented in this paper examines retention mechanisms that occur during nanocellulose transport. In a series of experiments, nanocellulose particles dispersed in brine were injected into sandpacks and Berea sandstone cores. The resulting retention and permeability reduction were measured. The experimental parameters that were varied include sand grain size, nanocellulose type, salinity, and flow rate. Under low salinity conditions, the dominant retention mechanism was adsorption and when salinity was increased, the dominant retention mechanism shifted towards log-jamming. Retention and permeability reduction increased as grain size decreased, which results from increased straining of nanocellulose aggregates. In addition, each type of nanocellulose was found to have significantly different transport properties. The experiments with Berea sandstone cores indicate that some pore volume was inaccessible to the nanocellulose. As a general trend, the larger the size of aggregates in bulk solution, the greater the observed retention and permeability reduction. Salinity was found to be the most important parameter affecting transport. Increased salinity caused additional aggregation, which led to increased straining and filter cake formation. Higher flow rates were found to reduce retention and permeability reduction. Increased velocity was accompanied by an increase in shear which is believed to promote breakdown of nanocellulose aggregates.

Nanomaterials ◽  
2018 ◽  
Vol 8 (7) ◽  
pp. 547 ◽  
Author(s):  
Reidun Aadland ◽  
Carter Dziuba ◽  
Ellinor Heggset ◽  
Kristin Syverud ◽  
Ole Torsæter ◽  
...  

The application of nanotechnology to the petroleum industry has sparked recent interest in increasing oil recovery, while reducing environmental impact. Nanocellulose is an emerging nanoparticle that is derived from trees or waste stream from wood and fiber industries. Thus, it is taken from a renewable and sustainable source, and could therefore serve as a good alternative to current Enhanced Oil Recovery (EOR) technologies. However, before nanocellulose can be applied as an EOR technique, further understanding of its transport behavior and retention in porous media is required. The research documented in this paper examines retention mechanisms that occur during nanocellulose transport. In a series of experiments, nanocellulose particles dispersed in brine were injected into sandpacks and Berea sandstone cores. The resulting retention and permeability reduction were measured. The experimental parameters that were varied include sand grain size, nanocellulose type, salinity, and flow rate. Under low salinity conditions, the dominant retention mechanism was adsorption and when salinity was increased, the dominant retention mechanism shifted towards log-jamming. Retention and permeability reduction increased as grain size decreased, which results from increased straining of nanocellulose aggregates. In addition, each type of nanocellulose was found to have significantly different transport properties. Experiments with Berea sandstone cores indicate that some pore volume was inaccessible to the nanocellulose. As a general trend, the larger the size of aggregates in bulk solution, the greater the observed retention and permeability reduction. Salinity was found to be the most important parameter affecting transport. Increased salinity caused additional aggregation, which led to increased straining and filter cake formation. Higher flow rates were found to reduce retention and permeability reduction. Increased velocity was accompanied by an increase in shear, which is believed to promote breakdown of nanocellulose aggregates.


2008 ◽  
Vol 48 (1) ◽  
pp. 21
Author(s):  
Changhong Gao

Capture of emulsion droplets in porous media can be costly or beneficial. When produced water is injected into reservoir for pressure maintenance, the oil droplets in produced water can plug reservoir rocks and cause the well to lose injectivity. Enhanced oil recovery (EOR) technology takes advantage of this feature and plugs high-injectivity zones with emulsions. Previous studies reveal that interception and straining are the mechanisms of permeability decline. Established models rely on filtration data to determine key parameters. In this work, a network model is proposed to simulate capture of oil droplets in reservoir rocks and resultant permeability reduction. The model is validated with test data and reasonably good results are obtained. The simulation also reveals that the wettability of the tested porous media was altered by injection of emulsions. The new approach considers the characteristics of the porous media and incorporates the damage mechanisms, thus providing more scientific insights into the flow and capture of droplets in porous media.


2016 ◽  
Vol 2016 ◽  
pp. 1-14 ◽  
Author(s):  
Emad W. Al-Shalabi ◽  
B. Ghosh

Oil recovery prediction and field pilot implements require basic understanding and estimation of displacement efficiency. Corefloods and glass micromodels are two of the commonly used experimental methods to achieve this. In this paper, waterflood recovery is investigated using layered etched glass micromodel and Berea sandstone core plugs with large permeability contrasts. This study focuses mainly on the effect of permeability (heterogeneity) in stratified porous media with no cross-flow. Three experimental setups were designed to represent uniformly stratified oil reservoir with vertical discontinuity in permeability. Waterflood recovery to residual oil saturation (Sor) is measured through glass micromodel (to aid visual observation), linear coreflood, and forced drainage-imbibition processes by ultracentrifuge. Six oil samples of low-to-medium viscosity and porous media of widely different permeability (darcy and millidarcy ranges) were chosen for the study. The results showed that waterflood displacement efficiencies are consistent in both permeability ranges, namely, glass micromodel and Berea sandstone core plugs. Interestingly, the experimental results show that the low permeability zones resulted in higher ultimate oil recovery compared to high permeability zones. At Sor microheterogeneity and fingering are attributed for this phenomenon. In light of the findings, conformance control is discussed for better sweep efficiency. This paper may be of help to field operators to gain more insight into microheterogeneity and fingering phenomena and their impact on waterflood recovery estimation.


2020 ◽  
Vol 18 (1) ◽  
pp. 31-40
Author(s):  
Victoria Mousalli ◽  
Johnny Bullón ◽  
Franklin Franklin

In the Enhanced Oil Recovery (EOR) methods, particularly in surfactant flooding, many tests have been performed, many scientific papers have been written and many findings have been found; however, there are still a lot of questions without any answers. Some of them are the interactions between the different reservoir components and the chemical flooding that are used in the EOR process. Nowadays, the main problem in the petroleum industry is the economic feasibility. Some authors report that the surfactant lost by the adsorption in the porous media increases the amount of surfactant that is needed. Understanding and controlling the amount of surfactant adsorbed directly, affects the project economics. It is crucial to the economic success of an EOR project that adsorption is reduced in the project design; to do so it requires an understanding of surfactant adsorption mechanisms. One of the factors that affect the surfactant adsorption in porous media is the mineralogy of the reservoir by the Cation Exchange Capacity (CEC) due to clays minerals present in the mineral composition of the reservoir.


2013 ◽  
Vol 807-809 ◽  
pp. 2498-2502 ◽  
Author(s):  
Ling Yue Tang ◽  
Yu Liu ◽  
Yong Chen Song ◽  
Zi Jian Shen ◽  
Xin Huan Zhou

In petroleum industry injection of carbon dioxide has a lot of economical advantages for oil recovery. The diffusion coefficient of CO2 in oil-saturated porous media is a critical parameter. However, there is no universally applicable technique for measuring the diffusion coefficients of gas in oil-saturated porous media. The main objective of this work is to develop a possible experimental method for measuring CO2 diffusion coefficients in oil-saturated porous media by CT technique. At last the relationship between pressure and diffusivity at T= 29 °C is discussed.


Author(s):  
Isah Mohammed ◽  
Clement C. Afagwu ◽  
Stephen Adjei ◽  
Ibrahim B. Kadafur ◽  
Mohammad S. Jamal ◽  
...  

Adsorption is a rock surface phenomenon and has increasingly become popular, especially in particle-transport applications across many fields. This has drawn a remarkable number of publications from the industry and academia in the last decade, with many review articles focused on adsorption of polymers, surfactants, gas, and nanoparticles in porous media with main applications in Enhanced Oil Recovery (EOR). The discussions involved both experimental and modeling approaches to understanding and efficiently mimicking the particle transport in a bid to solve pertinent problems associated with particle retention on surfaces. The governing mechanisms of adsorption and desorption constitute an area under active research as many models have been proposed but the physics has not been fully honored. Thus, there is a need for continuous research effort in this field. Although adsorption/desorption process is a physical phenomenon and a reversible process resulting from inter-molecular and the intramolecular association between molecules and surfaces, modeling these phenomena requires molecular level understanding. For this reason, there is a wide acceptance of molecular simulation as a viable modeling tool among scientists in this area. This review focuses on existing knowledge of adsorption modeling as it relates to the petroleum industry cutting across flow through porous media and EOR mostly involving polymer and surfactant retention on reservoir rocks with the associated problems. The review also analyzes existing models to identify gaps in research and suggest some research directions to readers.


Author(s):  
Pri Agung Rakhmanto ◽  
Listiana Satiawati ◽  
Rini Setiati ◽  
Asri Nugrahanti ◽  
Sonny Irawan

<em><span>In spontaneous imbibition researches, surfactant has been employed to control interfacial tension (IFT) and wettability. In this paper, the evaluation of grain size effect on spontaneous imbibition of surfactant solution is presented. In this work, the synthetic porous media (sand packs) with uniform and non-uniform grain size from 30 mesh to 100 mesh were made. The porous media were initially saturated by oil. Then they were immersed in brine with salinity of 62 to 40,000 ppm for 24 hours. After that, the porous media were immersed in surfactant solution with concentration of 0.2% for another 24 hours. The total oil recovery during these treatments was measured. The experiment was separated into three parts in order to investigate the effect of uniform grains, non-uniform grains, and salinity in spontaneous imbibition. The results show that grain size and porosity were proportional to oil recovery. In the case of porous media with uniform grain size, the effect of grain size on recovery factor is stronger than that of porosity. Meanwhile the salinity has an the optimum condition for </span><span lang="EN-US">a maximum </span><span>recovery factor. In this study, it happened at salinity of 20,000 ppm.</span><span> <span lang="EN-US">Oil recovery factors observed in this study ranged from 66.7% to 91.1%.</span></span></em>


2010 ◽  
Vol 14 (11) ◽  
pp. 1-13 ◽  
Author(s):  
Farhat Abbas ◽  
Derek A. Rose

Abstract During downward vertical flow of a viscous solution, the viscous fingering (VF) phenomenon affects miscible displacement of solutes through a soil profile. On the other hand, during horizontal flow, when the liquid residing in a horizontal bed of porous materials is displaced by another liquid of different density, the resulting hydrodynamic dispersion is modified by the formation of a tongue of denser liquid undershooting the less dense liquid, a phenomenon known as gravity segregation (GS). To explore VF and GS phenomena, the authors present laboratory experimental results on the vertical and horizontal transport of bulk solution and ions of different concentrations and/or densities through inert and reactive porous media. The study showed that, with miscible liquids, breakthrough starts later and ends earlier. The authors predicted the behavior of immiscible liquids by the nondimensional gravity segregation number β: that is, with increase in β, the segregation becomes extreme. The curve fitting technique CXTFIT 2.0 fitted the experimental breakthrough curves well, showing that the apparent coefficients of hydrodynamic dispersion vary much less with pore-water velocity in horizontal than in vertical flow, but retardation factors are not influenced by the orientation of flow. This work is relevant to the preferential flow of viscous liquids such as liquid fertilizers in agricultural fields, oil recovery processes, and the intrusion of saline water into the freshwater of coastal aquifers.


Author(s):  
H. Lin ◽  
D. P. Pope

During a study of mechanical properties of recrystallized B-free Ni3Al single crystals, regularly spaced parallel traces within individual grains were discovered on the surfaces of thin recrystallized sheets, see Fig. 1. They appeared to be slip traces, but since we could not find similar observations in the literature, a series of experiments was performed to identify them. We will refer to them “traces”, because they contain some, if not all, of the properties of slip traces. A variety of techniques, including the Electron Backscattering Pattern (EBSP) method, was used to ascertain the composition, geometry, and crystallography of these traces. The effect of sample thickness on their formation was also investigated.In summary, these traces on the surface of recrystallized Ni3Al have the following properties:1.The chemistry and crystallographic orientation of the traces are the same as the bulk. No oxides or other second phases were observed.2.The traces are not grooves caused by thermal etching at previous locations of grain boundaries.3.The traces form after recrystallization (because the starting Ni3Al is a single crystal).4.For thicknesses between 50 μm and 720 μm, the density of the traces increases as the sample thickness decreases. Only one set of “protrusion-like” traces is visible in a given grain on the thicker samples, but multiple sets of “cliff-like” traces are visible on the thinner ones (See Fig. 1 and Fig. 2).5.They are linear and parallel to the traces of {111} planes on the surface, see Fig. 3.6.Some of the traces terminate within the interior of the grains, and the rest of them either terminate at or are continuous across grain boundaries. The portion of latter increases with decreasing thickness.7.The grain size decreases with decreasing thickness, the decrease is more pronounced when the grain size is comparable with the thickness, Fig. 4.8.Traces also formed during the recrystallization of cold-rolled polycrystalline Cu thin sheets, Fig. 5.


Author(s):  
Jianlong Xiu ◽  
Tianyuan Wang ◽  
Ying Guo ◽  
Qingfeng Cui ◽  
Lixin Huang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document