Finding Exact Forms on a Thermodynamic Manifold
Because only two variables are needed to characterize a simple thermodynamic system in equilibrium, any such system is constrained on a 2D manifold. Of particular interest are the exact 1-forms on the cotangent space of that manifold, since the integral of exact 1-forms is path-independent, a crucial property satisfied by state variables such as internal energy dE and entropy dS. Our prior work [1] shows that given an appropriate language of vector calculus, a machine can re-discover the Maxwell equations and the incompressible Navier-Stokes equations from data. In this paper, We enhance this language by including differential forms and show that machines can re-discover the equation for entropy dS given data. Since entropy appears in various fields of science in different guises, a potential extension of this work is to use the machinery developed in this paper to let machines discover the expressions for entropy from data in fields other than classical thermodynamics.