scholarly journals Interpretation of Sedimentary Processes Using Heavy Mineral Unconstrained Data

Author(s):  
João Cascalho

This work describes and interprets the presence of heavy minerals in the western Portuguese continental margin using a set of 78 bottom samples collected from 3 distinct areas of this margin: Porto, Aveiro and Nazaré canyon head areas. The main transparent heavy mineral suite (minerals with frequencies >10%), is composed by amphiboles (hornblende), mica (biotite), andalusite, tourmaline and garnet. A secondary suite (minerals with frequencies between 1 and 10%), is composed by pyroxene (enstatite, diopside and augite), staurolite, zircon and apatite. With very low frequency representing less than 1% we found rutile, olivine, kyanite, monazite, epidote, sphene, anatase, sillimanite and brookite. The main primary sources (igneous and metamorphic rocks) explain the presence of these minerals. However, the application of the principal component analysis, with a previous application of the centered log ratio transformation of the heavy mineral data, also stresses for the importance of the grain sorting as a process in controlling the heavy mineral occurrence. The importance of this process is mostly sustained by the distribution pattern of mica and of the most flattened amphibole grains in a way that these particles tend to have a hydraulic affinity to finer grained sediments.

2018 ◽  
Vol 156 (07) ◽  
pp. 1111-1130 ◽  
Author(s):  
J. VERHAEGEN ◽  
G.J. WELTJE ◽  
D. MUNSTERMAN

AbstractThe field of provenance analysis has seen a revival in the last decade as quantitative data-acquisition techniques continue to develop. In the 20th century, many heavy-mineral data were collected. These data were mostly used as qualitative indications for stratigraphy and provenance, and not incorporated in a quantitative provenance methodology. Even today, such data are mostly only used in classic data tables or cumulative heavy-mineral plots as a qualitative indication of variation. The main obstacle to rigorous statistical analysis is the compositional nature of these data which makes them unfit for standard multivariate statistics. To gain more information from legacy data, a straightforward workflow for quantitative analysis of compositional datasets is provided. First (1) a centred log-ratio transformation of the data is carried out to fix the constant-sum constraint and non-negativity of the compositional data. Next, (2) cluster analysis is followed by (3) principal component analysis and (4) bivariate log-ratio plots. Several (5) proxies for the effects of sorting and weathering are included to check the provenance significance of observed variations and finally a (6) spatial interpolation of a provenance proxy extracted from the dataset can be carried out. To test this methodology, available heavy-mineral data from the southern edge of the Miocene North Sea Basin are analysed. The results are compared with available information from literature and are used to gain improved insight into Miocene sediment input variations in the study area.


Author(s):  
J. Tourenq ◽  
V. Rohrlich

Correspondence analysis, a non-parametric principal component analysis, has been used to analyze heavy mineral data so that variations between both samples and minerals can be studied simultaneously. Four data sets were selected to demonstrate the method. The first example, modern sediments from the River Nile, illustrates how correspondence analysis brings out extra details in heavy mineral associations. The other examples come from the Plio-Quaternary "Bourbonnais Formation" of the French Massif Central. The first data set demonstrates how the principal factor plane (with axes 1 and 2) highlights relationships between geographical position and the predominant heavy mineral association (metamorphic minerals and zircon), suggesting the paleogeographic source. In the second set, the factor plane of axes 1 and 3 indicates a subdivision of the metamorphic mineral assemblage, suggesting two sources of metamorphic minerals. Finally, outcrop samples were projected onto the factor plane and reveal ancient drainage systems important for the accumulation of the Bourbonnais sands. Statistical methods used in interpreting heavy minerals in sediments range from simple and classical methods, such as calculation of means and standard deviations, to the calculation of correspondences and variances. Use of multivariate methods is increasingly frequent (Maurer, 1983; Stattegger, 1986; 1987; Delaune et al., 1989; Mezzadri and Saccani, 1989) since the first studies of Imbrie and vanAndel (1964). Ordination techniques such as principal component analysis (Harman, 1961) synthesize large amounts of data and extract the most important relationships. We have chosen a non-parametric form of principal component analysis called correspondence analysis. This technique has been used in sedimentology by Chenet and Teil (1979) to investigate deep-sea samples, by Cojan and Teil (1982) and Mercier et al. (1987) to define paleoenvironments, and by Cojan and Beaudoin (1986) to show paleoecological control of deposition in French sedimentary basins. Correspondence analysis has been used successfully to interpret heavy mineral data (Tourenq et al, 1978a, 1978b; Bolin et al, 1982; Tourenq, 1986, 1989; Faulp et al, 1988; Ambroise et al, 1987). We provide examples of different situations where the method can be applied. We will not present the mathematical and statistical procedures involved in correspondence analysis, but refer readers to Benzécri et al.


GeoArabia ◽  
2004 ◽  
Vol 9 (4) ◽  
pp. 77-102 ◽  
Author(s):  
Mahbub Hussain ◽  
Lameed O. Babalola ◽  
Mustafa M. Hariri

ABSTRACT The Wajid Sandstone (Ordovician-Permian) as exposed along the road-cut sections of the Abha and Khamis Mushayt areas in southwestern Saudi Arabia, is a mediun to coarse-grained, mineralogically mature quartz arenite with an average quartz content of over 95%. Monocrystalline quartz is the dominant framework grain followed by polycrystalline quartz, feldspar and micas. The non-opaque heavy mineral assemblage of the sandstone is dominated by zircon, tourmaline and rutile (ZTR). Additional heavy minerals, constituting a very minor fraction of the heavies, include epidote, hornblende, and kyanite. Statistical analysis showed significant correlations between zircon, tourmaline, rutile, epidote and hornblende. Principal component R-mode varimax factor analysis of the heavy mineral distribution data shows two strong associations: (1) tourmaline, zircon, rutile, and (2) epidote and hornblende suggesting several likely provenances including igneous, recycled sedimentary and metamorphic rocks. However, an abundance of the ZTR minerals favors a recycled sedimentary source over other possibilities. Mineralogical maturity coupled with characteristic heavy mineral associations, consistent north-directed paleoflow evidence, and the tectonic evolutionary history of the region indicate a provenance south of the study area. The most likely provenances of the lower part (Dibsiyah and Khusayyan members) of the Wajid Sandstone are the Neoproterozoic Afif, Abas, Al-Bayda, Al-Mahfid, and Al-Mukalla terranes, and older recycled sediments of the infra-Cambrian Ghabar Group in Yemen to the south. Because Neoproterozic (650-542 Ma) rocks are not widespread in Somalia, Eritrea and Ethiopia, a significant source further to the south is not likely. The dominance of the ultrastable minerals zircon, tourmaline and rutile and apparent absence of metastable, labile minerals in the heavy mineral suite preclude the exposed arc-derived oceanic terrains of the Arabian Shield in the west and north as a significant contributor of the sandstone. An abundance of finer-grained siliciclastic sequences of the same age in the north, is consistent with a northerly transport direction and the existence of a deeper basin (Tabuk Basin?) to the north. The tectonic and depositional model presented in this paper differs from the existing model that envisages sediment transportation and gradual basin filling from west to east during the Paleozoic.


Minerals ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 445
Author(s):  
Dorota Chmielowska ◽  
Dorota Salata

This study is focused on the loess-like deposits accumulated on glaciofluvial fans of the Czarny Dunajec River in the Orava Basin (Southern Poland). The deposition of these sediments took place during three cold intervals of the Pleistocene: Würm, Riss, and Günz/Mindel. So far, the provenance and age of the deposits has not been precisely defined, even though the development of each fan is believed to be related to the successive glacial periods in the Tatra Mountains. Heavy minerals were studied to determine the source of the deposits. Heavy mineral analyses revealed that zircon, tourmaline, rutile, garnet, amphibole, epidote, and apatite are the typical constituents of the heavy mineral fraction. Abundances of heavy minerals differ in each of the Pleistocene fans of the Czarny Dunajec River, especially the amphibole content. However, the chemical composition of garnet, amphibole, and tourmaline is rather uniform. This research showed that mainly medium-grade metamorphic rocks with a subordinate share of high-grade metamorphics, and granitic rocks are the dominant source rocks of the deposits studied. Such rocks are exposed in the Western Tatra Mountains, which most probably supplied the Orava Basin with clastic material. Change in abundances of heavy minerals in the succession may reflect the progressive erosion of the source area. Grain-size distribution and textural features of the sampled sediments suggest fluvial and aeolian modes of transportation. Additionally, this study indicated that heavy minerals may be used to correlate the loess covers in the Orava Basin.


2021 ◽  
Vol 61 (2) ◽  
pp. 688
Author(s):  
Stuart Munday ◽  
Anne Forbes ◽  
Brenton Fairey ◽  
Juliane Hennig-Breitfeld ◽  
Tim Breitfeld ◽  
...  

The Early Permian in the onshore Perth Basin has experienced several significant discoveries in the last 8 years. Beginning with the play-opening Waitsia discovery (AWE), this was followed more recently by the Beharra Springs Deep (Beach Energy) and West Erregulla (Strike) discoveries. In addition, Late Permian sands (Dongara and Wagina sandstones) have long been recognised as excellent reservoirs in the basin. This study attempts to better understand the provenance of the Early and Late Permian sediments using automated Raman spectroscopy as a tool to identify variations in heavy mineral assemblages. Automated Raman spectroscopy analysis of heavy minerals minimises operator bias inherent in more traditional optical heavy mineral analyses. These data are integrated with publicly available chemostratigraphy data to enable a better understanding of sediment provenance variations with stratigraphy. In addition, publicly available detrital zircon geochronological data are incorporated to help further understand sediment sources. A transect of wells is investigated, from Arrowsmith-1 in the southernmost extent to Depot Hill-1 and Mt Horner-1 in the north. While the elemental (chemostratigraphy) data suggest some changes in sediment provenance through the Permian of the Perth Basin, the Raman heavy mineral data confirm a number of sediment provenance changes both at key formational boundaries (e.g. top Kingia sandstone) and complex sediment provenance variation within reservoir sandstone units. These results are integrated to demonstrate how sediment provenance holds the key to understanding controls on variable reservoir quality as well as understanding the early infill in this basin.


Minerals ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 385 ◽  
Author(s):  
Lünsdorf ◽  
Kalies ◽  
Ahlers ◽  
Dunkl ◽  
von Eynatten

A significant amount of information on sedimentary provenance is encoded in the heavy minerals of a sediment or sedimentary rock. This information is commonly assessed by optically determining the heavy-mineral assemblage, potentially followed by geochemical and/or geochronological analysis of specific heavy minerals. The proposed method of semi-automated heavy-mineral analysis by Raman spectroscopy (Raman-HMA) aims to combine the objective mineral identification capabilities of Raman spectroscopy with high-resolution geochemical techniques applied to single grains. The Raman-HMA method is an efficient and precise tool that significantly improves the comparability of heavy-mineral data with respect to both overall assemblages and individual compositions within solid solution series. Furthermore, the efficiency of subsequent analysis is increased due to identification and spatial referencing of the heavy minerals in the sample slide. The method is tested on modern sediments of the Fulda river (central Germany) draining two Miocene volcanic sources (Vogelsberg, Rhön) resting on top of Lower Triassic siliciclastic sediments. The downstream evolution of the volcanic detritus is documented and the capability to analyze silt-sized grains has revealed an additional eolian source. This capability also poses the possibility of systematically assessing the heavy-mineral assemblages of shales, which are often disregarded in sedimentary provenance studies.


2005 ◽  
Vol 42 (12) ◽  
pp. 2161-2171 ◽  
Author(s):  
D Canil ◽  
M Mihalynuk ◽  
J M MacKenzie ◽  
S T Johnston ◽  
B Grant

The sources of rare diamonds reported in northwestern British Columbia, southwestern Yukon, and parts of Alaska are enigmatic. We carried out a heavy-mineral survey of 17 streams draining bedrock in the Atlin–Nakina region in northwestern British Columbia to determine if high-pressure igneous and metamorphic rocks exhumed in the area could be potential sources for the diamond. Heavy-mineral fractions returned flakes of gold but no diamond. The ferromagnetic fractions were examined optically and by electron microprobe analysis of key indicator minerals, namely olivine, orthopyroxene, clinopyroxene, garnet, spinel, and titanite. Detritus from a horizon of coarse pebble conglomerate in the Jurassic Laberge Group south of Atlin is the most likely source of the anomalous diamond. Garnets and pyroxenes in the latter sedimentary unit were derived by rapid erosion of peridotite and eclogite massif bodies exhumed from depths approaching the diamond stability field during collision and Pliensbachian uplift in the northern Cordillera. Evidence is shown for glacial transport of detritus from both the Laberge Group sediments and Neogene volcanics, the latter of which evidently covered a much wider area before the last glaciation.


2021 ◽  
pp. 1-13
Author(s):  
Jasper Verhaegen ◽  
Hilmar von Eynatten ◽  
István Dunkl ◽  
Gert Jan Weltje

Abstract Heavy mineral analysis is a long-standing and valuable tool for sedimentary provenance analysis. Many studies have indicated that heavy mineral data can also be significantly affected by hydraulic sorting, weathering and reworking or recycling, leading to incomplete or erroneous provenance interpretations if they are used in isolation. By combining zircon U–Pb geochronology with heavy mineral data for the southern North Sea Basin, this study shows that the classic model of sediment mixing between a northern and a southern source throughout the Neogene is more complex. In contrast to the strongly variable heavy mineral composition, the zircon U–Pb age spectra are mostly constant for the studied samples. This provides a strong indication that most zircons had an initial similar northern source, yet the sediment has undergone intense chemical weathering on top of the Brabant Massif and Ardennes in the south. This weathered sediment was later recycled into the southern North Sea Basin through local rivers and the Meuse, leading to a weathered southern heavy mineral signature and a fresh northern heavy mineral signature, yet exhibiting a constant zircon U–Pb age signature. Thus, this study highlights the necessity of combining multiple provenance proxies to correctly account for weathering, reworking and recycling.


Minerals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 573
Author(s):  
Shahid Iqbal ◽  
Michael Wagreich ◽  
Mehwish Bibi ◽  
Irfan U. Jan ◽  
Susanne Gier

The Salt Range, in Pakistan, preserves an insightful sedimentary record of passive margin dynamics along the NW margin of the Indian Plate during the Mesozoic. This study develops provenance analyses of the Upper Triassic (Kingriali Formation) to Lower Jurassic (Datta Formation) siliciclastics from the Salt and Trans Indus ranges based on outcrop analysis, petrography, bulk sediment elemental geochemistry, and heavy-mineral data. The sandstones are texturally and compositionally mature quartz arenites and the conglomerates are quartz rich oligomictic conglomerates. Geochemical proxies support sediment derivation from acidic sources and deposition under a passive margin setting. The transparent heavy mineral suite consists of zircon, tourmaline, and rutile (ZTR) with minor staurolite in the Triassic strata that diminishes in the Jurassic strata. Together, these data indicate that the sediments were supplied by erosion of the older siliciclastics of the eastern Salt Range and adjoining areas of the Indian Plate. The proportion of recycled component exceeds the previous literature estimates for direct sediment derivation from the Indian Shield. A possible increase in detritus supply from the Salt Range itself indicates notably different conditions of sediment generation, during the Triassic–Jurassic transition. The present results suggest that, during the Triassic–Jurassic transition in the Salt Range, direct sediment supply from the Indian Shield was probably reduced and the Triassic and older siliciclastics were exhumed on an elevated passive margin and reworked by a locally established fluvio-deltaic system. The sediment transport had a north-northwestward trend parallel to the northwestern Tethyan margin of the Indian Plate and normal to its opening axis. During the Late Triassic, hot and arid hot-house palaeoclimate prevailed in the area that gave way to a hot and humid greenhouse palaeoclimate across the Triassic–Jurassic Boundary. Sedimentological similarity between the Salt Range succession and the Neo-Tethyan succession exposed to the east on the northern Indian passive Neo-Tethyan margin suggests a possible westward extension of this margin.


Sign in / Sign up

Export Citation Format

Share Document