scholarly journals Bone marrow derived extracellular vesicles activate osteoclast differentiation in traumatic brain injury induced bone loss

Author(s):  
Quante Singleton ◽  
Kumar Vaibhav ◽  
Molly Braun ◽  
Andrew Khayrullin ◽  
Bharati Mendhe ◽  
...  

Traumatic brain injury (TBI) is a major source of worldwide morbidity and mortality. Patients suffering from TBI exhibit a higher susceptibility to bone loss and an increased rate of bone fractures; however, the underlying mechanisms remain poorly defined. Herein, we observed significantly lower bone quality and elevated levels of inflammation in bone and bone marrow niche after controlled cortical impact-induced TBI in in-vivo CD-1 mice. Further, we identified dysregulated NFB signaling, an established mediator of osteoclast differentiation and bone loss, within the bone marrow niche of TBI mice. Ex vivo studies revealed increased osteoclast differentiation in bone marrow-derived cells from TBI mice, as compared to sham injured mice. Finally, we found bone marrow derived extracellular vesicles (EVs) from TBI mice enhanced the colony forming ability and osteoclast differentiation efficacy of bone marrow cells and activated NFB signaling genes in bone marrow-derived cells. Taken together, we provide evidence that TBI-induced inflammatory stress on bone and the bone marrow niche may activate NFB leading to accelerated bone loss. Targeted inhibition of these signaling pathways may reverse TBI-induced bone loss and reduce fracture rates.

Cells ◽  
2019 ◽  
Vol 8 (1) ◽  
pp. 63 ◽  
Author(s):  
Quante Singleton ◽  
Kumar Vaibhav ◽  
Molly Braun ◽  
Chandani Patel ◽  
Andrew Khayrullin ◽  
...  

Traumatic brain injury (TBI) is a major source of worldwide morbidity and mortality. Patients suffering from TBI exhibit a higher susceptibility to bone loss and an increased rate of bone fractures; however, the underlying mechanisms remain poorly defined. Herein, we observed significantly lower bone quality and elevated levels of inflammation in bone and bone marrow niche after controlled cortical impact-induced TBI in in vivo CD-1 mice. Further, we identified dysregulated NF-κB signaling, an established mediator of osteoclast differentiation and bone loss, within the bone marrow niche of TBI mice. Ex vivo studies revealed increased osteoclast differentiation in bone marrow-derived cells from TBI mice, as compared to sham injured mice. We also found bone marrow derived extracellular vesicles (EVs) from TBI mice enhanced the colony forming ability and osteoclast differentiation efficacy and activated NF-κB signaling genes in bone marrow-derived cells. Additionally, we showed that miRNA-1224 up-regulated in bone marrow-derived EVs cargo of TBI. Taken together, we provide evidence that TBI-induced inflammatory stress on bone and the bone marrow niche may activate NF-κB leading to accelerated bone loss. Targeted inhibition of these signaling pathways may reverse TBI-induced bone loss and reduce fracture rates.


2019 ◽  
Author(s):  
Lixin Xiang ◽  
Li Chen ◽  
Yang Xiang ◽  
Fengjie Li ◽  
Xiaomei Zhang ◽  
...  

AbstractRadiation induces rapid bone loss and enhances bone resorption and RANKL expression. RANKL provides the crucial signal to induce osteoclast differentiation and plays an important role in bone resorption. However, the mechanisms of radiation-induced osteoporosis are not fully understood. Here, we show that Crif1 expression increases in bone marrow cells after radiation. Conditional Crif1 deletion in bone marrow cells causes decreases in RANKL expression and the RANKL/OPG ratio, and relieves bone loss after radiation in mice. We further demonstrated in vitro that Crif1 promotes RANKL secretion via the cAMP/PKA pathway. Moreover, protein-protein docking screening identified five compounds as Crif1 inhibitors; these compounds dramatically suppressed RANKL secretion and CREB phosphorylation when cells were exposed to forskolin. This study enriches current knowledge of the pathogenesis of osteoporosis and provides insights into potential therapeutic strategies for osteoporosis treatment.


2006 ◽  
Vol 398 (1-2) ◽  
pp. 12-17 ◽  
Author(s):  
Jia Lu ◽  
Shabbir Moochhala ◽  
Xiao-Lei Moore ◽  
Kian Chye Ng ◽  
Mui Hong Tan ◽  
...  

Cancers ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2969
Author(s):  
Takashi Watanabe

Angiogenesis and immunosuppression promote multiple myeloma (MM) development, and osteolysis is a primary feature of MM. Although immunomodulatory drugs and proteasome inhibitors (PIs) markedly improve the survival of patients with MM, this disease remains incurable. In the bone marrow niche, a chain of ectoenzymes, including CD38, produce immunosuppressive adenosine, inhibiting T cell proliferation as well as immunosuppressive cells. Therefore, anti-CD38 antibodies targeting myeloma cells have the potential to restore T cell responses to myeloma cells. Meanwhile extracellular vesicles (EVs) containing microRNAs, proteins such as cytokines and chemokines, long noncoding RNAs, and PIWI-interacting RNAs have been shown to act as communication tools in myeloma cell/microenvironment interactions. Via EVs, mesenchymal stem cells allow myeloma cell dissemination and confer PI resistance, whereas myeloma cells promote angiogenesis, myeloid-derived suppressor cell proliferation, and osteoclast differentiation and inhibit osteoblast differentiation. In this review, to understand key processes of MM development involving communication between myeloma cells and other cells in the tumor microenvironment, EV cargo and the non-canonical adenosinergic pathway are introduced, and ectoenzymes and EVs are discussed as potential druggable targets for the treatment of MM patients.


2016 ◽  
Vol 38 (2) ◽  
pp. 748-762 ◽  
Author(s):  
Qin Shen ◽  
Yong Yin ◽  
Qing-Jie Xia ◽  
Na Lin ◽  
You-Cui Wang ◽  
...  

Background/Aims: To investigate the effects of bone marrow stromal cells (BMSCs) and underlying mechanisms in traumatic brain injury (TBI). Methods: Cultured BMSCs from green fluorescent protein-transgenic mice were isolated and confirmed. Cultured BMSCs were immediately transplanted into the regions surrounding the injured-brain site to test their function in rat models of TBI. Neurological function was evaluated by a modified neurological severity score on the day before, and on days 7 and 14 after transplantation. After 2 weeks of BMSC transplantation, the brain tissue was harvested and analyzed by microarray assay. And the coronal brain sections were determined by immunohistochemistry with mouse anti-growth-associated protein-43 kDa (anti-GAP-43) and anti-synaptophysin to test the effects of transplanted cells on the axonal regeneration in the host brain. Terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) assay and Western blot were used to detect the apoptosis and expression of BAX and BAD. Results: Microarray analysis showed that BMSCs expressed growth factors such as glial cell-line derived neurotrophic factor (GDNF). The cells migrated around the injury sites in rats with TBI. BMSC grafts resulted in an increased number of GAP-43-immunopositive fibers and synaptophysin-positive varicosity, with suppressed apoptosis. Furthermore, BMSC transplantation significantly downregulated the expression of BAX and BAD signaling. Moreover, cultured BMSC transplantation significantly improved rat neurological function and survival. Conclusion: Transplanted BMSCs could survive and improve neuronal behavior in rats with TBI. Mechanisms of neuroprotection and regeneration were involved, which could be associated with the GDNF regulating the apoptosis signals through BAX and BAD.


Sign in / Sign up

Export Citation Format

Share Document