Nonlocal Symmetries for Time-Dependent Order Differential Equations
Keyword(s):
New Type
◽
A new type of ordinary differential equation is introduced and discussed, namely, the time-dependent order ordinary differential equations. These equations can be solved via fractional calculus and are mapped into Volterra integral equations of second kind with singular integrable kernel. The solutions of the time-dependent order differential equations smoothly deforms solutions of the classical integer order ordinary differential equations into one-another, and can generate or remove singularities. An interesting symmetry of the solution in relation to the Riemann zeta function and Harmonic numbers was also proved.
Keyword(s):
2011 ◽
Vol 44
(44)
◽
pp. 445201
◽
2001 ◽
Vol 12
(4)
◽
pp. 433-463
◽
2011 ◽
Vol 18
(sup1)
◽
pp. 123-133
◽
Keyword(s):
1961 ◽
Vol 9
(3)
◽
pp. 399-407
◽
Keyword(s):
1979 ◽
Vol 3
(2-4)
◽
pp. 57-63
◽