scholarly journals Interconnecting Haptic Interfaces through The Internet

Author(s):  
George Kokkonis ◽  
Kostas E. Psannis ◽  
Sotirios Kontogiannis ◽  
Petros Nicopolitidis ◽  
Manos Roumeliotis ◽  
...  

Supermedia streams transfer video, audio, haptic and other sensory data. Real -time transfering of supermedia streams over the Internet is quite challenging. This paper outlines the proposed protocols for transferring supermedia streams over the Internet. Moreover, it describes the Quality of Service (QoS) requirements for supermedia applications that a network has to fulfill. Extensive simulations and experiments for the performance evaluation of transport protocols for real time transferring HEVC streams with supermedia data are carried out. Complements, differences and relevancies between simulation and real world experiments are discussed. The metrics that are measured for the performance evaluation are delay, jitter, throughput, efficiency, packet loss and one proposed by the authors, packet arrival deviation. The simulation tests reveal which protocols could be used for the transfer of real-time supermedia data with a HEVC video stream.

2018 ◽  
Vol 1 (4) ◽  
pp. 51
Author(s):  
George Kokkonis ◽  
Kostas Psannis ◽  
Sotirios Kontogiannis ◽  
Petros Nicopolitidis ◽  
Manos Roumeliotis ◽  
...  

Real-time transferring of the haptic sense over the Internet is quite a challenging task. This paper outlines the proposed protocols for transferring haptic streams over the Internet. Moreover, it describes the Quality of Service requirements that a network has to fulfill in order to successfully use haptic interfaces with high update rates over the Internet. Extensive simulations and experiments for the performance evaluation of transport protocols for real-time transferring haptic data are carried out. Complements between simulation and real world experiments are discussed. The metrics that are measured for the performance evaluation are delay, jitter, throughput, efficiency, packet loss and one proposed by the authors, packet arrival deviation. The simulation tests reveal which protocols could be used for the transfer of real-time haptic data over the Internet.


2016 ◽  
Author(s):  
Γεώργιος Κοκκώνης

As the Internet spreads, new web applications come to light. One promising sector that is still in its infancy is supermedia applications. Supermedia applications manipulate video, audio, haptic and other sensory data. With the word haptic we refer to the sense of touch that the user feels when he uses a “Haptic” service. The haptic feeling has the ability to increase the sense of reality, to excite the user and improve the quality of experience. To carry out this sense through the Internet was, until recently, impracticable due to processing inefficiencies and/or protocol performance in capabilities, such as throughput and jitter constraints. This thesis presents a survey of transport protocols for supermedia applications. It outlines the Haptic data transmission characteristics and the necessary QoS requirements for the maximization of the Quality of Experience for Haptic users. It also depicts the qualitative features that transport and application layer protocols should contain in order to carry haptic data. It also describes a Haptic system architecture. A new network adaptive flow control algorithm is proposed. The new algorithm combines most of the known flow control algorithms while taking into account the network conditions οf the Internet and the significant haptic events. It analyses the metrics that have to be taken into consideration for the evaluation of Haptic transferring. These metrics are the delay, the jitter, the throughput, the efficiency, the packet loss and the proposed by the authors, packet arrival deviation. Based on these metrics, evaluation of the most commonly used real time transport protocols is performed. It also presents experiments for real time Haptic data transferring that have been carried out by the authors through different networks and locations. Extensive simulations and experiments for the performance evaluation of transport protocols for real time transferring HEVC streams with supermedia data are carried out. Complements, differences and relevancies between simulation and real world experiments are discussed. The simulation tests reveal which protocols could be used for the transfer of real-time supermedia data with a HEVC video stream.As far as video transmission is concerned, this thesis presents the related work on High Efficiency Video Coding. It points out the challenges and the synchronization techniques that have being proposed for synchronizing video and haptic data. Comparative tests between H.264 and HEVC are undertaken. Measurements for the network conditions of the Internet are carried out. The equations for the transferring delay of all the inter prediction configurations of the HEVC are defined. Furthermore, it proposes a new efficient algorithm for transferring a real-time High Efficient Video Coding stream with haptic data through the Internet.Furthermore, it presents the design of a novel real time wireless multisensory smart surveillance system with 3D HEVC features. The proposed high level system architecture of this surveillance system is analyzed. The advantages of the new HEVC encoding are presented. The synchronization issues between the multiple streams are described and solved. All the available wireless standard are presented and compared. A network adaptive transmission protocol for a reliable real-time multisensory surveillance system is proposed. Adaptive Packet Frame Grouping and quantization is enforced in order maximum Quality of Experience to be fulfilled. Measurements from the proposed protocol have given satisfactory results comparing to existing transport protocols.It also deals with the wireless transfer of real-time high update rate supermedia data over the Internet of Things. It presents the related work on supermedia data transferring and QoE requirements. It proposes a high level architectural design for the transport of wireless multiple supermedia streams over IoT. The most known compression techniques and flow controls for wireless sensory data transferring are analyzed. Based on these compression techniques a new network adaptive flow control algorithm is proposed. Measurements for multihop wireless transferring of high update rate supermedia packets over IoT are presented


Author(s):  
Sotirios Kontogiannis ◽  
George Kokkonis

Sensory and haptic data transfers to critical real-time applications over the Internet require better than best effort transport, strict timely and reliable ordered deliveries. Multi-sensory applications usually include video and audio streams with real-time control and sensory data, which aggravate and compress within real-time flows. Such real-time are vulnerable to synchronization to synchronization problems, if combined with poor Internet links. Apart from the use of differentiated QoS and MPLS services, several haptic transport protocols have been proposed to confront such issues, focusing on minimizing flows rate disruption while maintaining a steady transmission rate at the sender. Nevertheless, these protocols fail to cope with network variations and queuing delays posed by the Internet routers. This paper proposes a new haptic protocol that tries to alleviate such inadequacies using three different metrics: mean frame delay, jitter and frame loss calculated at the receiver end and propagated to the sender. In order to dynamically adjust flow rate in a fuzzy controlled manners, the proposed protocol includes a fuzzy controller to its protocol structure. The proposed FRTPS protocol (Fuzzy Real-Time haPticS protocol), utilizes crisp inputs into a fuzzification process followed by fuzzy control rules in order to calculate a crisp level output service class, denoted as Service Rate Level (SRL). The experimental results of FRTPS over RTP show that FRTPS outperforms RTP in cases of congestion incidents, out of order deliveries and goodput.


2020 ◽  
Vol 21 (3) ◽  
pp. 181-190
Author(s):  
Jaroslav Frnda ◽  
Marek Durica ◽  
Mihail Savrasovs ◽  
Philippe Fournier-Viger ◽  
Jerry Chun-Wei Lin

AbstractThis paper deals with an analysis of Kohonen map usage possibility for real-time evaluation of end-user video quality perception. The Quality of Service framework (QoS) describes how the network impairments (network utilization or packet loss) influence the picture quality, but it does not reflect precisely on customer subjective perceived quality of received video stream. There are several objective video assessment metrics based on mathematical models trying to simulate human visual system but each of them has its own evaluation scale. This causes a serious problem for service providers to identify a critical point when intervention into the network behaviour is needed. On the other hand, subjective tests (Quality of Experience concept) are time-consuming and costly and of course, cannot be performed in real-time. Therefore, we proposed a mapping function able to predict subjective end-user quality perception based on the situation in a network, video stream features and results obtained from the objective video assessment method.


2015 ◽  
Vol 2015 ◽  
pp. 1-4 ◽  
Author(s):  
Denis Souto Valente ◽  
Luciano Silveira Eifler ◽  
Lauro Aita Carvalho ◽  
Gustavo Azambuja Pereira Filho ◽  
Vinicius Weissheimer Ribeiro ◽  
...  

Background. Telemedicine can be defined as the use of electronic media for transmission of information and medical data from one site to another. The objective of this study is to demonstrate an experience of telemedicine in plastic surgery. Methods. 32 plastic surgeons received a link with password for real-time streaming of a surgery. At the end of the procedure, the surgeons attending the procedure by the Internet answered five questions. The results were analyzed with descriptive statistics. Results. 27 plastic surgeons attended the online procedure in real-time. 96.3% considered the access to the website as good or excellent and 3.7% considered it bad. 14.8% reported that the transmission was bad and 85.2% considered the quality of transmission as good or excellent. 96.3% classified the live broadcasting as a good or excellent learning experience and 3.7% considered it a bad experience. 92.6% reported feeling able to perform this surgery after watching the demo and 7.4% did not feel able. 100% of participants said they would like to participate in other surgical demonstrations over the Internet. Conclusion. We conclude that the use of telemedicine can provide more access to education and medical research, for plastic surgeons looking for medical education from distant regions.


2018 ◽  
Vol 2018 ◽  
pp. 1-19 ◽  
Author(s):  
Admir Kaknjo ◽  
Muzaffar Rao ◽  
Edin Omerdic ◽  
Luke Robinson ◽  
Daniel Toal ◽  
...  

This work presents a detailed study, characterization, and measurement of video latency in a real-time video streaming application. The target application consists of an automatic control system in the form of a control station and the mini Remotely Operated Vehicle (ROV) equipped with a camera, which is controllable over local area network (LAN) and the Internet. Control signal transmission and feedback measurements to the operator usually impose real-time constraints on the network channel. Similarly, the video stream, which is required for the normal system control and maneuvering, imposes further strict requirements on the network in terms of bandwidth and latency. Based on these requirements, controlling the system in real time through a standard Internet connection is a challenging task. The measurement of important network parameters like availability, bandwidth, and latency has become mandatory for remotely controlling the system in real time. It is necessary to establish a methodology for the measurement of video and network latency to improve the real-time controllability and safety of the system as such measurement is not possible using existing solutions due to the following reasons: insufficient accuracy, relying on the Internet resources such as generic Network Time Protocol (NTP) servers, inability to obtain one-way delay measurement, and many solutions only having support for web cameras. Here, an efficient, reliable, and cost-effective methodology for the measurement of latency of a video stream over a LAN and the Internet is proposed. A dedicated stratum-1 NTP server is used and the necessary software needed for acquiring and measuring the latency of a video stream from a generic IP camera as well as integration into the existing ROV control software was developed. Here, by using the software and dedicated clock synchronization equipment (NTP server), it was found that normal video latencies in a LAN were in the range of 488ms – 850ms, while latencies over the Internet were measured to be in the range of 558ms – 1211ms. It is important to note that the values were obtained by using a generic (off-the-shelf) IP camera and they represent the actual latencies which might be experienced during control over long range and across international territory borders.


2014 ◽  
Vol 989-994 ◽  
pp. 5041-5044
Author(s):  
Hong Xia Zhang ◽  
Qiang Zhang

With the development of modern information and communication technology and network technology, modern enterprises choose to build virtual dynamic alliance to achieve business development goals. There are many uncertain relationships between the participating companies in the virtual dynamic alliance. These companies join together to accomplish a particular goal, but also has their own unique individual needs. Internet of Things is an important part of a new generation of information technology. Things technology is an extension and expansion of the network based on the Internet. Basis for building virtual dynamic alliance is the Internet. The enterprises participating in a virtual dynamic alliance communicate with each other relying on information communication technology. Internet of Things technology provides real-time performance evaluation data to the participating enterprises. This will ensure real-time performance data communication between the dynamic alliance enterprises relatively loose.


2014 ◽  
Vol 926-930 ◽  
pp. 1984-1987
Author(s):  
Peng Wei Li ◽  
Hong Li Zhao ◽  
Hai Tao Yang ◽  
Shu Sun

The DDS middleware provides powerful support for data dissemination in the distributed real-time and embedded (DRE) systems, and supports multiple transport protocol (e.g. TCP, UDP and Multicast) that affect the end-to-end quality of service (QoS) properties (e.g. latency, jitter and reliability).In order to evaluate the performance of the transport protocol and then evaluate the affection on the DDS middleware QoS, this paper first briefly compares the common DDS implementations, and then presents performance evaluation and analysis of the transport protocol in OpenDDS with different environment configurations, at last presents the conclusion.


Sign in / Sign up

Export Citation Format

Share Document