scholarly journals Tillage and Residue Management Effects on Productivity, Profitability and Soil Properties of a Rice-Maize-Mungbean System in Bangladesh

Author(s):  
M.H. Rashid ◽  
Jagadish Timsina ◽  
N. Islam ◽  
Saiful Islam

Farmers’ conventional tillage (CT) and residue removal practices in rice-maize systems in South Asia’s Eastern Gangetic Plain (EGP) are input-intensive, costly and soil degradative. We conducted a rice-maize-mungbean (R-M-MB) system experiment with six tillage and three residue management treatments in Bangladesh representing the EGP. Maize yields were significantly (p≤0.05) higher under permanent (PB) or fresh (FB) beds and strip tillage (ST) than CT but no differences in mungbean yields. Rice yields under PB, FB and CT were similar, but significantly higher than under zero or minimum tillage and ST. Yields of all crops increased significantly (p≤0.05) with residue retention compared to no retention. Total system productivity was highest under PB followed by FB and ST. Compared with CT, gross margins in PB, FB and ST increased by 18, 13 and 11%, and soil organic matter (SOM) and total N contents across tillage treatments increased by 11-16% and 12-24%, respectively. After three years, SOM and total N and available P and S contents increased significantly (p≤0.05) by residue retention. Results demonstrate the potential of PB, FB and ST with residue retention, for improving the productivity, profitability and soil health under R-M-MB systems in Bangladesh and similar soils in the EGP.

2018 ◽  
Vol 6 (2) ◽  
pp. 164-168 ◽  
Author(s):  
Bibek Thapa ◽  
Keshab Raj Pande ◽  
Baburam Khanal ◽  
Santosh Marahatta

A field experiment was conducted to evaluate the effect of tillage practices, residue management and cropping system on soil properties at NMRP, Rampur, Chitwan from November 2015 to April 2016. The experiment was laid on Strip split design with combination of 12 different treatments i.e, zero tillage & conventional tillage as main plot in the strip, residue retention & residue removal as sub-plot factor and maize – wheat, maize + soybean – wheat & soybean – wheat cropping system as sub-sub plot factor. Three replications of the treatments were made. Soil sample before experiment and after harvest of wheat was taken (0-15cm). The experiment showed significant effect of zero tillage on organic carbon (2.169%) and on total soil nitrogen (0.112 %). Zero tillage with retention of residues is valuable tool for the conservation agriculture and helps in sustainability of soil however long-term research for the tillage management and residue retention should be conducted to highlight the major effects on change in properties of soil.Int. J. Appl. Sci. Biotechnol. Vol 6(2): 164-168 


2020 ◽  
Vol 22 (2) ◽  
pp. 55-66
Author(s):  
MI Hossain ◽  
MI Hossain ◽  
MA Ohab ◽  
MHR Sheikh ◽  
BL Nag

A three yearsfield experiment was conducted at Regional Wheat Research Centre, Shyampur, Rajshahiduring 2014-15 to 2017-18 with an objective to observe the effects on soil fertility and performance of the crops under different tillage and residue management for rice-wheat (RW) systems by adding a third pre-rice crop of maize. The experiment was conducted in split plot design with three replication. The tillage options viz. (i) Strip tillage (ST) (ii) Permanent bed (PB) and (iii) conventional (CT) tillage; two crop residue management, viz. (i) 0%=no residue and (ii) 30% residue retention were studied. The results indicated that keeping 30% crop residue in the field with minimum disturbance of soil had significant contribution on grain yield of wheat-maize-rice sequence compare to conventional practice of well-till without crop residue retention.The permanent bed planting system gave the highest yields of wheat (4.37 tha-1), maize (7.31 tha-1) and rice (4.40 tha-1) and followed by strip tillage and lowest in conventional tillage. Among the residue management, 30% residue retention showed the highest yields of wheat (4.46tha- 1), maize (7.39 tha-1) and rice (4.69 tha-1). Considering economic performance of all tillage systems, the permanent bed planting system performed the best among all other tillage options and followed by strip tillage. Contrarily, 30% residue retention gave the highest yield and increased 0.12-0.14% organic matter into the soil with more productive.The results indicates that, both tillage systems coupled with 30% residue retention might be a good option for higher yield as well as soil fertility for Wheat-Maize- Taman rice cropping pattern in drought prone areas of Bangladesh. Bangladesh Agron. J. 2019, 22(2): 55-66


Agriculture ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 265
Author(s):  
Jin Zhang ◽  
Lan-Fang Wu

Weeds are often harmful to crop growth due to the competition for space and resources. A field experiment containing four treatments with three replications in a complete randomized design was conducted at Yucheng Comprehensive Experiment Station, Chinese Academy of Sciences since 2008 to assess the impact of shifting from conventional tillage to no-till with crop residue management on weeds and wheat production at the North China Plain. We found that both aboveground weed density and species richness were higher under continuous no-till (NT) than conventional tillage (CT) in the regrowth and stem elongation stage of wheat growth. On the other hand, aboveground weed density in the stage of flowering and filling decreased with crop residue mulching. The density of the soil seed bank in crop residue removal treatments was significantly higher than that of crop residue retention. Besides, either crop residue mulching or incorporating into the soil significantly increased the wheat yield compared with crop residue removal regardless of tillage management. In conclusion, crop residue retention could decrease the weed density and species richness both aboveground and in the soil seed bank and inhibit the growth of broadleaf weeds by the residue layer. Moreover, crop residue retention could improve the wheat yield.


Author(s):  
Hossain M ◽  
◽  
Begum M ◽  
Rahman M ◽  
Hashem A ◽  
...  

A two year longer on-farm research on conservation agriculture was conducted at Bhangnamari area of Bangladesh during November-June in 2014-15 and 2015-16 to evaluate the performance of non-puddled rice cultivation under increased crop residue retention. The rice variety BRRI dhan28 was transplanted under puddled conventional tillage (CT) vs. non-puddled strip tillage (ST) with 50% standing residue (R50) vs. conventional no-residue (R0) practice. The treatments were arranged in a randomized complete block design with four replications. There were no significant yield differences between tillage practices and residue levels in 2014-15. But in the following year, ST yielded 9% more grain compared to CT leading to 22% higher BCR. Retention of 50% residue increased yield by 3% over no-residue, which contributed to 10% higher benefit-cost ratio (BCR). Results of this two year on-farm study confirmed that the ST combined with 50% residue retention yielded the highest grain yield (5.81 t ha-1) which contributed to produce the highest BCR (1.06).


2012 ◽  
Vol 58 (No. 1) ◽  
pp. 28-33 ◽  
Author(s):  
J.J. Wang ◽  
X.Y. Li ◽  
A.N. Zhu ◽  
X.K. Zhang ◽  
H.W. Zhang ◽  
...  

The impacts of tillage system (conventional tillage and no-tillage) and residue management (0, 50, and 100%) on soil properties and soil microbial community structure were determined in the Fengqiu State Key Agro-Ecological Experimental Station, North China. The microbial community structure was investigated by phospholipid fatty acid (PLFA) profiles. The results showed that tillage had significant effects on soil properties and soil microbial communities. In no-tillage (NT), microbial biomass carbon (MBC), total N, microbial biomass carbon/soil organic carbon (MBC/SOC), total microbes, and arbuscular mycorrhiza fungi increased, while actinomycetes, G<sup>+</sup>/G<sup>&ndash;</sup> bacteria ratio and monounsaturated fatty acids/saturated fatty acids (MUFA/STFA) decreased, compared with those in conventional tillage (CT). Residue had a significant positive effect on C/N ratio and MUFA/STFA. Canonical correspondence analysis indicated that tillage explained 76.1%, and residue management explained 0.6% of the variations in soil microbial communities, respectively. Soil microbial communities were significantly correlated with MBC, total N, C/N ratio and MBC/SOC. Among the six treatments, NT with 100% residue application obviously improved soil microbiological properties, and could be a proper management practice in the Huang-Huai-Hai Plain of China. &nbsp;


2020 ◽  
Vol 22 (2) ◽  
pp. 67-75
Author(s):  
MI Hossain ◽  
MI Hossain ◽  
MA Ohab ◽  
MHR Sheikh ◽  
BL Nag

The study was conducted to know the productivity and soil fertility status of intensified rice-wheat (RW) systems by adding a third pre-rice crop mungbeani.ewheat-mungbeanrice cropping pattern. The trial comprises five packages of practices including crop residue retention, seeding methods with tillage options imposed on the component crops in the same cropping pattern. The results indicated that keeping standing 30% crop residue in the field with minimum disturbance of soil had significant contribution on grain yield of wheat-mungbean-rice sequence compare to conventional practice of well-till without crop residue retention. System productivity and fertility were evaluated under five levels of tillage options (zero, strip, raised bed, minimum tillage by power tiller operated system (PTOS) and conventional tillage practice (CTP) in a RWM cropping pattern. Both permanent raised bed and strip till with 30% straw retention produced the highest productivity in all years and the lowest yield was also found from conventional practice with 30% straw retention.Soil organic matter in surface soil had increased by 0.12% after 3years crop cycles with 30% SR from rice and wheat and full residue retention from mungbean crop. Straw retention is an important component of soil management and may have long term positive impacts on soil quality. The combination of raised bedsystems and strip tillage with 30% residues retained appears to be a very promising technology for sustainable intensification of wheat-mungbean-rice croppingpattern in dry zone areas. Bangladesh Agron. J. 2019, 22(2): 67-75


Author(s):  
Raghubar Sahu ◽  
S. K. Mandal ◽  
K. Sharda ◽  
D. Kumar ◽  
Jubuli Sahu ◽  
...  

A field experiment was conducted during Kharif and rabi seasons of 2015 and 2016 at farmer’s field of Banka District as an On Farm Trial to study the crop residues management with different crop establishment methods in rice (Oryza sativa L.)–wheat (Triticum aestivum L.) cropping system. Treatment comprised two levels of crop residue management ie. residue removal and residue retention (33%) and three levels of crop establishment methods ie. (a) conventional puddled transplanted rice fb conventional-till wheat (PTR-CTW), two times ploughing with cultivator followed by two times puddling and one planking was done before the manual transplanting of 21 days old seedling at 20 cm spacing from row to row. After rice harvesting, wheat was sown by broadcasting in conventional tillage plots with two times harrowing with cultivator followed by one planking; (b) unpuddled transplanted rice fb zero-till wheat (UPTR-ZTW): two times ploughing with cultivator followed by planking, after that water is submerged for transplanting and wet tillage was avoided. 21 days old rice seedlings were transplanted at a spacing of 20 x 15 cm. Wheat crop was sown under ZT using zero tillage machines; (c) zero-till direct-seeded rice fb zero-till wheat (ZTDSR-ZTW): direct-seeding of rice was done using zero-till seed-cum-fertilizer drill in ZT-flat plots at 20 cm row spacing. Wheat crop was sown in zero tillage using zero till machine. Rice variety (Rajendra Sweta) was sown directly by zero till in ZTDSR-ZT plots in the first fortnight of June. On the same date, rice seedlings for transplanting were raised in nursery by ‘Wet bed method’. Experiment was conducted in a split plot design which is replicated by thrice. Grain/panicle or spike, panicle or ear length and effective tillers/m2 recorded more in residue retention treatment and it was registered significantly superior with residue removal treatment under crop residue management in rice and wheat crop during both the years of experiment. Amongst crop establishment method, ZTDSR-ZTW was recorded more Grain/panicle or spike, panicle or ear length and effective tillers/m2 and it was significantly superior with UPTR-ZTW and PTR-CTW treatments under crop establishment methods in rice and wheat crop during both the years of experiment. Residues retention (33%) significantly improved the grain yield of both the component crops. For rice crop, 8.2–10.0% higher grain yield was realized with retention of crop residues. Grain and straw yield of rice were registered more in ZTDSR-ZTW (3.86-3.99 t/ha) & (5.56-5.75 t/ha) closely followed by UPTR-ZTW (4.38-4.45 t/ha). Concerning the data of residue management on economics revealed that the residue retention was recorded more gross return, net return as well as B: C ratio followed by residue removal treatment in both years of experimentation for rice and wheat crop and ZTDSR-ZTW was recorded more gross return, net return as well as B: C ratio followed by UPTR-ZTW and PTR-CTW treatments under crop establishment methods in rice and wheat crop during both the years of experiment.


Agronomy ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1622
Author(s):  
Mukesh Kumar ◽  
Sabyasachi Mitra ◽  
Sonali Paul Mazumdar ◽  
Bijan Majumdar ◽  
Amit Ranjan Saha ◽  
...  

Crop diversity through residue incorporation is the most important method for sustaining soil health. A field study was conducted over five consecutive years (2012–2017) to see the impact of residue incorporartions in Inceptisol of eastern India. The main plot treatments had five cropping systems (CS), namely, fallow−rice−rice (FRR), jute−rice−wheat (JRW), jute−rice−baby corn (JRBc), jute−rice−vegetable pea (JRGp), jute−rice−mustard−mungbean/green gram (JRMMu), which cinsisted of four sub-plots with varied nutrient and crop residue management (NCRM) levels, namely crops with no residue +75% of the recommended dose of fertilizers (RDF) (F1R0), crops with the residue of the previous crops +75% RDF (F1R1), crops with no resiude +100% RDF (F2R0), and crops with residue +100% RDF (F2R1). The highest system productivity was obtained for JRBc (15.3 Mg·ha−1), followed by JRGp (8.81 Mg·ha−1) and JRMMu (7.61 Mg·ha−1); however, the highest sustainability index was found with the JRGp cropping system (0.88), followed by JRMMu (0.82). Among the NCRMs, the highest productivity (8.78 Mg·ha−1) and sustainability index (0.83) were recorded in F2R1. Five soil parameters, namely, bulk density, available K, urease activity, dehydrogenase activity, and soil microbial biomass carbon (SMBC), were used in the minimum data-set (MDS) for the calculation of the soil quality index (SQI). The best attainment of SQI was found in the JRGp system (0.63), closely followed by the JRMMu (0.61) cropping system.


Author(s):  
Mohammad Mobarak Hossain ◽  
Mahfuza Begum ◽  
Md. Moshiur Rahman ◽  
Abul Hashem ◽  
Richard W. Bell ◽  
...  

On-farm research was conducted at Gouripur sub-district under Mymensingh district of Bangladesh during the boro (mid November-June) season in 2013-14 and 2014-15 to evaluate the performance of non-puddled rice cultivation with and without crop residue retention. The rice var. BRRI dhan28 was transplanted by two tillage practices viz., puddled conventional tillage (CT) and non-puddled strip tillage (ST) and at two levels of mustard residues, i.e., no residue (R0) and 50% residue (R50). The experiment was designed in a randomized complete block design with four replications. There were no significant yield differences between tillage practices and residue levels in 2013-14. But in the following year, ST yielded 9% more grain compared to CT leading to 22% higher BCR. Retention of 50% residue increased yield by 3% compared to no-residue, which contributed to 10% higher benefit-cost ratio (BCR). The ST combined with 50% residue retention yielded the highest grain yield (5.81 t ha-1) which contributed to produce the highest BCR (1.06).


2018 ◽  
Vol 43 (2) ◽  
pp. 333-343
Author(s):  
MAH Khan ◽  
N Sultana ◽  
N Akter ◽  
MS Zaman ◽  
AK Choudhury

The experiment was conducted at the farmers’ field of Bhaluka Upazilla under On-Farm Research division, Bangladesh Agricultural Research Institute, Mymensingh during 2014-15 and 2015-16 to evaluate the performance of Wheat-Mungbean-T.aman rice improved cropping pattern against a farmers cropping pattern of Wheat-Fallow-T.aman rice. The findings of the study indicated that three crops could be grown successfully in sequence in the tested site. The higher rice equivalent yield (15.33 t hd-1 yr.-1), production efficiency (34.74 kg ha-1 day-1) and land utilization index (70.69 %) were obtained from the improved cropping pattern than the farmer’s one. Average gross return (Tk. 262750 ha-1), gross margin (Tk 126204 ha-1) and marginal benefit cost ratio (MBCR) 2.23 of the improved pattern indicate it’s superiority over farmers’ existing pattern. The fertility status of soil i.e. pH, organic matter, total N, available P, S, Zn and B content in soil were increased over the initial soil due to addition of mungbean biomass.Thus, inclusion of mungbean in the existing farmer’s cropping pattern will improve soil health and the system productivity as a whole.Bangladesh J. Agril. Res. 43(2): 333-343, June 2018


Sign in / Sign up

Export Citation Format

Share Document