scholarly journals Mosquitoes as a Potential Vector for the Transmission of the Amphibian Chytrid Fungus

Author(s):  
John Gould ◽  
Jose Valdez ◽  
Michelle Stockwell ◽  
Simon Clulow ◽  
Michael Mahony

The amphibian chytrid fungus, Batrachochytrium dendrobatidis (Bd), is an infectious disease responsible for the worldwide decline of amphibian species. To mitigate these declines, it is necessary to identify the various vectors by which the fungus can be transmitted between individuals and populations. The objective of this study was to determine whether adult female mosquitoes can carry and transfer Bd fungal cells. Mosquitoes were exposed to net soaked in a live Bd zoospore suspension to determine whether they are able to externally acquire the fungus. Another group was placed into containers with a sterile and Bd-inoculated agar plate to determine whether mosquitoes could transfer Bd between these surfaces. Bd DNA was found to be present on mosquito legs exposed to inoculated netting and agar plates suggesting that Bd can be transmitted by the mosquito over short distances This is the first study to demonstrate that an insect host may be a mechanical vector of Bd and suggests that we should begin to consider the role of mosquitoes in the dissemination and control of the fungus.

2019 ◽  
Vol 29 (1) ◽  
pp. 39-44 ◽  
Author(s):  
John Gould ◽  
Jose W. Valdez ◽  
Michelle P. Stockwell ◽  
Simon Clulow ◽  
Michael J. Mahony

The amphibian chytrid fungus, Batrachochytrium dendrobatidis (Bd), is an infectious disease responsible for the worldwide decline of amphibian species. To mitigate these declines, it is necessary to identify the various vectors by which the fungus can be transmitted between individuals and populations. The objective of this study was to determine whether adult female mosquitoes can carry and transfer Bd fungal cells. Mosquitoes were exposed to netting soaked in a live Bd zoospore suspension to determine whether they are able to externally acquire the fungus. Another group was placed into containers with a sterile and Bd-inoculated agar plate to determine whether mosquitoes could transfer Bd between these surfaces. Bd DNA was found to be present on mosquito legs exposed to inoculated netting and agar plates suggesting that Bd can be transmitted by the mosquito over short distances. This is the first study to demonstrate that an insect host may be a mechanical vector of Bd and suggests that we should begin to consider the role of mosquitoes in the dissemination and control of the fungus.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Jaime Bosch ◽  
Camino Monsalve-Carcaño ◽  
Stephen J. Price ◽  
Jon Bielby

AbstractUnderstanding the occurrence and consequence of co-infections can be useful in designing disease management interventions. Amphibians are the most highly threatened vertebrates, and emerging pathogens are a serious threat to their conservation. The amphibian chytrid fungus and the viruses of the Ranavirus genus are already widely distributed, causing disease outbreaks and population declines worldwide. However, we lack information about the occurrence and consequences of coinfection with these pathogens across age-classes of amphibian hosts. Here, we analyze the occurrence of infection of the amphibian chytrid fungus and ranaviruses during one season in two susceptible amphibian species at two different locations at which outbreaks have occurred. We found that the co-occurrence of both pathogens in a particular host is not common except in highly susceptible life-stages, and that single infections are the most common situation. Moreover, we found that the occurrence of one pathogen in a particular host did not predict the occurrence of the other. We attribute these results to the niches in which both pathogens proliferate in amphibian hosts.


2021 ◽  
Author(s):  
Allison Q Byrne ◽  
Anthony W Waddle ◽  
Veronica Saenz ◽  
Michel Ohmer ◽  
Jef R Jaeger ◽  
...  

Host-pathogen specificity can arise from certain selective environments mediated by both the host and pathogen. Therefore, understanding the degree to which host species identity is correlated with pathogen genotype can help reveal historical host-pathogen dynamics. One animal disease of particular concern is chytridiomycosis, typically caused by the global panzootic lineage of the amphibian chytrid fungus ( Batrachochytrium dendrobatidis , Bd), termed the Bd-GPL. This pathogen lineage has caused devastating declines in amphibian communities around the world. However, the origin of Bd-GPL and the fine-scale transmission dynamics of this lineage have remained a mystery. This is especially the case in North America where Bd-GPL is widespread, but disease outbreaks occur sporadically. Herein, we use Bd genetic data collected throughout the United States from amphibian skin swab and cultured isolate samples to investigate Bd genetic patterns. We highlight two case studies in Pennsylvania and Nevada where Bd-GPL genotypes are strongly correlated with host species identity. Specifically, in some localities bullfrogs ( Rana catesbeiana ) are infected with Bd-GPL lineages that are distinct from those infecting other sympatric amphibian species. Overall, we reveal a previously unknown association of Bd genotype with host species and identify the eastern United States as a Bd diversity hotspot and potential ancestral population for Bd-GPL.


PLoS ONE ◽  
2022 ◽  
Vol 17 (1) ◽  
pp. e0262561
Author(s):  
Olivia Wetsch ◽  
Miranda Strasburg ◽  
Jessica McQuigg ◽  
Michelle D. Boone

Emerging infectious diseases are increasing globally and are an additional challenge to species dealing with native parasites and pathogens. Therefore, understanding the combined effects of infectious agents on hosts is important for species’ conservation and population management. Amphibians are hosts to many parasites and pathogens, including endemic trematode flatworms (e.g., Echinostoma spp.) and the novel pathogenic amphibian chytrid fungus (Batrachochytrium dendrobatidis [Bd]). Our study examined how exposure to trematodes during larval development influenced the consequences of Bd pathogen exposure through critical life events. We found that prior exposure to trematode parasites negatively impacted metamorphosis but did not influence the effect of Bd infection on terrestrial growth and survival. Bd infection alone, however, resulted in significant mortality during overwintering—an annual occurrence for most temperate amphibians. The results of our study indicated overwintering mortality from Bd could provide an explanation for enigmatic declines and highlights the importance of examining the long-term consequences of novel parasite exposure.


2021 ◽  
Vol 4 ◽  
Author(s):  
Omneya Osman ◽  
Johan Andersson ◽  
Tomas Larsson ◽  
Mats Töpel ◽  
Alexander Eiler

National monitoring programs provide the basis for evaluating the integrity of ecosystems, their responses to disturbances, and the success of actions taken to conserve or recover biodiversity. In this study, we successfully established a national program for the invasive chytrid fungus Batrachochytrium dendrobatidis (Bd) based on dual TaqMan assays. Amphibian diversity based on metabarcoding of the mitochondrial 12S rRNA gene was also performed. Assays were optimized for sensitive detection of target species from a wide range of amphibian ponds with variable potential of inhibitions for eDNA based detection. An amphibian mock community of 5 species was used to validate the metabarcoding approach while internal standards were used in the case of the dual TaqMan assays. First sampling of over 170 ponds in Norway resulted in Bd detection in 12 environmental samples and one swab sample taken over multiple years indicating the establishment of Bd in Norway. Five amphibian species Bufo bufo, Lissotriton vulgaris, Triturus cristatus, Rana arvalis and Rana temporaria as predicted from data in long-term citizen science reporting systems were widely detected in the collected eDNA samples. Our large scale-monitoring program indicates a low risk of a Bd outbreak and amphibian decline caused by chytridiomycosis but continued monitoring is recommended in the future. These findings indicate that eDNA is an effective method to detect invasive species, and to monitor endangered amphibian species. Still, several shortcomings (such as PCR inhibitors and sample volume) were identified that need to be addressed to improve eDNA-based monitoring at the national level.


2021 ◽  
Author(s):  
Rebecca J. Webb ◽  
Alexandra A. Roberts ◽  
Stephen Wylie ◽  
Tiffany Kosch ◽  
Luís Felipe Toledo ◽  
...  

2019 ◽  
Vol 286 (1904) ◽  
pp. 20190833 ◽  
Author(s):  
Minjie Fu ◽  
Bruce Waldman

Many amphibian species around the world, except in Asia, suffer morbidity and mortality when infected by the emerging infectious pathogen Batrachochytrium dendrobatidis (Bd). A lineage of the amphibian chytrid fungus isolated from South Korean amphibians (BdAsia-1) is evolutionarily basal to recombinant global pandemic lineages (BdGPL) associated with worldwide amphibian population declines. In Asia, the Bd pathogen and its amphibian hosts have coevolved over 100 years or more. Thus, resilience of Asian amphibian populations to infection might result from attenuated virulence of endemic Bd lineages, evolved immunity to the pathogen or both. We compared susceptibilities of an Australasian amphibian, Litoria caerulea , known to lack resistance to BdGPL, with those of three Korean species, Bufo gargarizans , Bombina orientalis and Hyla japonica , after inoculation with BdAsia-1, BdGPL or a blank solution. Subjects became infected in all experimental treatments but Korean species rapidly cleared themselves of infection, regardless of Bd lineage. They survived with no apparent secondary effects. By contrast, L. caerulea , after infection by either BdAsia-1 or BdGPL, suffered deteriorating body condition and carried progressively higher Bd loads over time. Subsequently, most subjects died. Comparing their effects on L. caerulea , BdAsia-1 induced more rapid disease progression than BdGPL. The results suggest that genomic recombination with other lineages was not necessary for the ancestral Bd lineage to evolve hypervirulence over its long period of coevolution with amphibian hosts. The pathogen's virulence may have driven strong selection for immune responses in endemic Asian amphibian host species.


2019 ◽  
Vol 31 (2) ◽  
pp. 246-249 ◽  
Author(s):  
Claudio Borteiro ◽  
Francisco Kolenc ◽  
José Manuel Verdes ◽  
Claudio Martínez Debat ◽  
Martín Ubilla

Histology is often underappreciated for the detection of the amphibian pathogenic fungus Batrachochytrium dendrobatidis, the cause of the potentially lethal skin disease chytridiomycosis. We evaluated the sensitivity of histology to detect chytrids in 20 wild specimens of 2 frog species from Uruguay that were clinically normal, but confirmed by PCR to be infected by B. dendrobatidis. We detected maturing and sporulated sporangia in 15 of 20 (75%) frogs, which is more sensitive than previously reported for histology. The effort needed to identify chytrids in histologic skin sections of Physalaemus henselii and Pleurodema bibroni required examination of 3.2 and 8.7 mm of skin sections for each frog species, respectively.


Sign in / Sign up

Export Citation Format

Share Document