scholarly journals Ancestral chytrid pathogen remains hypervirulent following its long coevolution with amphibian hosts

2019 ◽  
Vol 286 (1904) ◽  
pp. 20190833 ◽  
Author(s):  
Minjie Fu ◽  
Bruce Waldman

Many amphibian species around the world, except in Asia, suffer morbidity and mortality when infected by the emerging infectious pathogen Batrachochytrium dendrobatidis (Bd). A lineage of the amphibian chytrid fungus isolated from South Korean amphibians (BdAsia-1) is evolutionarily basal to recombinant global pandemic lineages (BdGPL) associated with worldwide amphibian population declines. In Asia, the Bd pathogen and its amphibian hosts have coevolved over 100 years or more. Thus, resilience of Asian amphibian populations to infection might result from attenuated virulence of endemic Bd lineages, evolved immunity to the pathogen or both. We compared susceptibilities of an Australasian amphibian, Litoria caerulea , known to lack resistance to BdGPL, with those of three Korean species, Bufo gargarizans , Bombina orientalis and Hyla japonica , after inoculation with BdAsia-1, BdGPL or a blank solution. Subjects became infected in all experimental treatments but Korean species rapidly cleared themselves of infection, regardless of Bd lineage. They survived with no apparent secondary effects. By contrast, L. caerulea , after infection by either BdAsia-1 or BdGPL, suffered deteriorating body condition and carried progressively higher Bd loads over time. Subsequently, most subjects died. Comparing their effects on L. caerulea , BdAsia-1 induced more rapid disease progression than BdGPL. The results suggest that genomic recombination with other lineages was not necessary for the ancestral Bd lineage to evolve hypervirulence over its long period of coevolution with amphibian hosts. The pathogen's virulence may have driven strong selection for immune responses in endemic Asian amphibian host species.

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Jaime Bosch ◽  
Camino Monsalve-Carcaño ◽  
Stephen J. Price ◽  
Jon Bielby

AbstractUnderstanding the occurrence and consequence of co-infections can be useful in designing disease management interventions. Amphibians are the most highly threatened vertebrates, and emerging pathogens are a serious threat to their conservation. The amphibian chytrid fungus and the viruses of the Ranavirus genus are already widely distributed, causing disease outbreaks and population declines worldwide. However, we lack information about the occurrence and consequences of coinfection with these pathogens across age-classes of amphibian hosts. Here, we analyze the occurrence of infection of the amphibian chytrid fungus and ranaviruses during one season in two susceptible amphibian species at two different locations at which outbreaks have occurred. We found that the co-occurrence of both pathogens in a particular host is not common except in highly susceptible life-stages, and that single infections are the most common situation. Moreover, we found that the occurrence of one pathogen in a particular host did not predict the occurrence of the other. We attribute these results to the niches in which both pathogens proliferate in amphibian hosts.


Author(s):  
Andrea Costa ◽  
Lorenzo Dondero ◽  
Giorgia Allaria ◽  
Bryan Nelson Morales Sanchez ◽  
Giacomo Rosa ◽  
...  

AbstractThe emerging amphibian disease, Batrachochytrium dendrobatidis (Bd), is driving population declines worldwide and even species extinctions in Australia, South and Central America. In order to mitigate effects of Bd on amphibian populations, high-exposed areas should be identified at the local scale and effective conservation measures should be planned at the national level. This assessment is actually lacking in the Mediterranean basin, and in particular in Italy, one of the most relevant amphibian diversity hotspots in the entire region. In this study, we reviewed the available information on Bd in Italy, and conducted a 5-year molecular screening on 1274 individual skin swabs belonging to 18 species. Overall, we found presence of Bd in 13 species and in a total of 56 known occurrence locations for peninsular Italy and Sardinia. We used these occurrence locations and climate data to model habitat suitability of Bd for current and future climatic scenarios. We then employed electric circuit theory to model landscape permeability to the diffusion of Bd, using a resistance map. With this procedure, we were able to model, for the first time, the diffusion pathways of Bd at the landscape scale, characterising the main future pathways towards areas with a high probability of Bd occurrence. Thus, we identified six national protected areas that will become pivotal for a nationally-based strategic plan in order to monitor, mitigate and possibly contrast Bd diffusion in Italy.


2013 ◽  
Vol 280 (1753) ◽  
pp. 20122506 ◽  
Author(s):  
Xuan Liu ◽  
Jason R. Rohr ◽  
Yiming Li

Global factors, such as climate change, international trade and introductions of exotic species are often elicited as contributors to the unprecedented rate of disease emergence, but few studies have partitioned these factors for global pandemics. Although contemporary correlative species distribution models (SDMs) can be useful for predicting the spatial patterns of emerging diseases, they focus mainly on the fundamental niche (FN) predictors (i.e. abiotic climate and habitat factors), neglecting dispersal and propagule pressure predictors (PP, number of non-native individuals released into a region). Using a validated, predictive and global SDM, we show that both FN and PP accounted for significant, unique variation to the distribution of the chytrid fungus Batrachochytrium dendrobatidis ( Bd ), a pathogen implicated in the declines and extinctions of over 200 amphibian species worldwide. Bd was associated positively with vegetation, total trade and introduced amphibian hosts, nonlinearly with annual temperature range and non-significantly with amphibian leg trade or amphibian species richness. These findings provide a rare example where both FN and PP factors are predictive of a global pandemic. Our model should help guide management of this deadly pathogen and the development of other globally predictive models for species invasions and pathogen emergence influenced by FN and PP factors.


2021 ◽  
Author(s):  
Sara Meurling ◽  
Maria Cortazar-Chinarro ◽  
Mattias Siljestam ◽  
David Ahlen ◽  
Erik Agren ◽  
...  

Populations of the same species may differ in their sensitivity to pathogens but the factors behind this variation are poorly understood. Moreover, infections may cause sub-lethal fitness effects even in species resistant or tolerant to disease. The chytrid fungus Batrachochytrium dendrobatidis (Bd), is a generalist pathogen which has caused amphibian population declines worldwide. In many species, Bd infection causes the disease chytridiomycosis, often leading to high mortality. We investigated how geographical origin affects tolerance to Bd by exposing newly metamorphosed individuals of two North European amphibians (moor frog Rana arvalis, common toad Bufo bufo) from two latitudinal regions to two different BdGPL strains. Bd exposure strongly lowered survival in B. bufo, and in both species survival was lower in the northern region, this difference being much stronger in B. bufo. Northern individuals were smaller in both species, and the survival difference between the regions was size-mediated with smaller individuals being more sensitive to Bd. In both species, Bd exposure led to sub-lethal effects in terms of reduced growth suggesting that even individuals surviving the infection may have reduced fitness mediated by smaller body size. Bd strain affected size-dependent mortality differently in the two regions. We discuss the possible mechanisms how body size and geographical origin can contribute to the present results.


2015 ◽  
Vol 282 (1805) ◽  
pp. 20142881 ◽  
Author(s):  
Matthew H. Becker ◽  
Jenifer B. Walke ◽  
Shawna Cikanek ◽  
Anna E. Savage ◽  
Nichole Mattheus ◽  
...  

Symbiotic microbes can dramatically impact host health and fitness, and recent research in a diversity of systems suggests that different symbiont community structures may result in distinct outcomes for the host. In amphibians, some symbiotic skin bacteria produce metabolites that inhibit the growth of Batrachochytrium dendrobatidis (Bd), a cutaneous fungal pathogen that has caused many amphibian population declines and extinctions. Treatment with beneficial bacteria (probiotics) prevents Bd infection in some amphibian species and creates optimism for conservation of species that are highly susceptible to chytridiomycosis, the disease caused by Bd. In a laboratory experiment, we used Bd-inhibitory bacteria from Bd-tolerant Panamanian amphibians in a probiotic development trial with Panamanian golden frogs, Atelopus zeteki , a species currently surviving only in captive assurance colonies. Approximately 30% of infected golden frogs survived Bd exposure by either clearing infection or maintaining low Bd loads, but this was not associated with probiotic treatment. Survival was instead related to initial composition of the skin bacterial community and metabolites present on the skin. These results suggest a strong link between the structure of these symbiotic microbial communities and amphibian host health in the face of Bd exposure and also suggest a new approach for developing amphibian probiotics.


2019 ◽  
Vol 29 (1) ◽  
pp. 39-44 ◽  
Author(s):  
John Gould ◽  
Jose W. Valdez ◽  
Michelle P. Stockwell ◽  
Simon Clulow ◽  
Michael J. Mahony

The amphibian chytrid fungus, Batrachochytrium dendrobatidis (Bd), is an infectious disease responsible for the worldwide decline of amphibian species. To mitigate these declines, it is necessary to identify the various vectors by which the fungus can be transmitted between individuals and populations. The objective of this study was to determine whether adult female mosquitoes can carry and transfer Bd fungal cells. Mosquitoes were exposed to netting soaked in a live Bd zoospore suspension to determine whether they are able to externally acquire the fungus. Another group was placed into containers with a sterile and Bd-inoculated agar plate to determine whether mosquitoes could transfer Bd between these surfaces. Bd DNA was found to be present on mosquito legs exposed to inoculated netting and agar plates suggesting that Bd can be transmitted by the mosquito over short distances. This is the first study to demonstrate that an insect host may be a mechanical vector of Bd and suggests that we should begin to consider the role of mosquitoes in the dissemination and control of the fungus.


2018 ◽  
Vol 27 (Supplement) ◽  
pp. 81-90
Author(s):  
A.A. Cunningham

The unexplained decline of amphibian populations across the world was first recognised in the late 20th century. When investigated, most of these “enigmatic” declines have been shown to be due to one of two types of infectious disease: ranavirosis caused by infection with FV3-like ranavirus or with common midwife toad virus, or chytridiomycosis caused by infection with Batrachochytrium dendrobatidis or B. salamandrivorans. In all cases examined, infection has been via the human-mediated introduction of the pathogen to a species or population in which it has not naturally co-evolved. While ranaviruses and B. salamandrivorans have caused regionally localised amphibian population declines in Europe, the chytrid fungus, B. dendrobatidis, has caused catastrophic multi-species amphibian population declines and species extinctions globally. These diseases have already caused the loss of amphibian biodiversity, and over 40% of known amphibian species are threatened with extinction. If this biodiversity loss is to be halted, it is imperative that regulations are put in place – and enforced – to prevent the spread of known and yet-to-be discovered amphibian pathogens. Also, it is incumbent on those who keep or study amphibians to take measures to minimise the risk of disease spread, including from captive animals to those in the wild.


Molecules ◽  
2020 ◽  
Vol 25 (22) ◽  
pp. 5436
Author(s):  
Katelyn A. M. McMillan ◽  
Melanie R. Power Coombs

Host defense peptides (HDPs) are a group of antimicrobial peptides (AMPs) that are crucial components of the innate immune system of many different organisms. These small peptides actively kill microbes and prevent infection. Despite the presence of AMPs in the amphibian immune system, populations of these organisms are in decline globally. Magainin is an AMP derived from the African clawed frog (Xenopus laevis) and has displayed potent antimicrobial effects against a wide variety of microbes. Included in this group of microbes are known pathogens of the African clawed frog and other amphibian species. Arguably, the most deleterious amphibious pathogen is Batrachochytrium dendrobatidis, a chytrid fungus. Investigating the mechanism of action of magainin can help understand how to effectively fight off infection. By understanding amphibian AMPs’ role in the frog, a potential conservation strategy can be developed for other species of amphibians that are susceptible to infections, such as the North American green frog (Rana clamitans). Considering that population declines of these organisms are occurring globally, this effort is crucial to protect not only these organisms but the ecosystems they inhabit as well.


Author(s):  
John Gould ◽  
Jose Valdez ◽  
Michelle Stockwell ◽  
Simon Clulow ◽  
Michael Mahony

The amphibian chytrid fungus, Batrachochytrium dendrobatidis (Bd), is an infectious disease responsible for the worldwide decline of amphibian species. To mitigate these declines, it is necessary to identify the various vectors by which the fungus can be transmitted between individuals and populations. The objective of this study was to determine whether adult female mosquitoes can carry and transfer Bd fungal cells. Mosquitoes were exposed to net soaked in a live Bd zoospore suspension to determine whether they are able to externally acquire the fungus. Another group was placed into containers with a sterile and Bd-inoculated agar plate to determine whether mosquitoes could transfer Bd between these surfaces. Bd DNA was found to be present on mosquito legs exposed to inoculated netting and agar plates suggesting that Bd can be transmitted by the mosquito over short distances This is the first study to demonstrate that an insect host may be a mechanical vector of Bd and suggests that we should begin to consider the role of mosquitoes in the dissemination and control of the fungus.


2021 ◽  
Author(s):  
Allison Q Byrne ◽  
Anthony W Waddle ◽  
Veronica Saenz ◽  
Michel Ohmer ◽  
Jef R Jaeger ◽  
...  

Host-pathogen specificity can arise from certain selective environments mediated by both the host and pathogen. Therefore, understanding the degree to which host species identity is correlated with pathogen genotype can help reveal historical host-pathogen dynamics. One animal disease of particular concern is chytridiomycosis, typically caused by the global panzootic lineage of the amphibian chytrid fungus ( Batrachochytrium dendrobatidis , Bd), termed the Bd-GPL. This pathogen lineage has caused devastating declines in amphibian communities around the world. However, the origin of Bd-GPL and the fine-scale transmission dynamics of this lineage have remained a mystery. This is especially the case in North America where Bd-GPL is widespread, but disease outbreaks occur sporadically. Herein, we use Bd genetic data collected throughout the United States from amphibian skin swab and cultured isolate samples to investigate Bd genetic patterns. We highlight two case studies in Pennsylvania and Nevada where Bd-GPL genotypes are strongly correlated with host species identity. Specifically, in some localities bullfrogs ( Rana catesbeiana ) are infected with Bd-GPL lineages that are distinct from those infecting other sympatric amphibian species. Overall, we reveal a previously unknown association of Bd genotype with host species and identify the eastern United States as a Bd diversity hotspot and potential ancestral population for Bd-GPL.


Sign in / Sign up

Export Citation Format

Share Document