scholarly journals Comparing Yiq and Ycbcr Colour Image Transforms for Semi-Fragile Medical Image Steganography

Author(s):  
Peter Eze ◽  
Parampalli Udaya ◽  
Robin Evans ◽  
Dongxi Liu

Visible light photography diagnostic images are coloured ex vivo medical images popularly used in Dermatology and Endoscopy for diagnosis and monitoring. The need to protect the integrity of these images as well as associated patient data calls for techniques such as image steganography and watermarking. This research explores and compares the effect of watermarking on the YIQ and YCbCr colour transforms used in processing digital coloured images and video in recent times. Using a new spread spectrum watermarking algorithm, it was found that YIQ has better distortion performance than YCbCr in the order of 3dB while YCbCr had lower BER for accurate watermark retrieval and tamper detection in the order of 1.3 x 10-3.

2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
R. Eswaraiah ◽  
E. Sreenivasa Reddy

In telemedicine while transferring medical images tampers may be introduced. Before making any diagnostic decisions, the integrity of region of interest (ROI) of the received medical image must be verified to avoid misdiagnosis. In this paper, we propose a novel fragile block based medical image watermarking technique to avoid embedding distortion inside ROI, verify integrity of ROI, detect accurately the tampered blocks inside ROI, and recover the original ROI with zero loss. In this proposed method, the medical image is segmented into three sets of pixels: ROI pixels, region of noninterest (RONI) pixels, and border pixels. Then, authentication data and information of ROI are embedded in border pixels. Recovery data of ROI is embedded into RONI. Results of experiments conducted on a number of medical images reveal that the proposed method produces high quality watermarked medical images, identifies the presence of tampers inside ROI with 100% accuracy, and recovers the original ROI without any loss.


2021 ◽  
Vol 18 (2(Suppl.)) ◽  
pp. 0957
Author(s):  
Bushra Abdullah Shtayt ◽  
Nur Haryani Zakaria ◽  
Nor Hazlyna Harun

The rapid development of telemedicine services and the requirements for exchanging medical information between physicians, consultants, and health institutions have made the protection of patients’ information an important priority for any future e-health system. The protection of medical information, including the cover (i.e. medical image), has a specificity that slightly differs from the requirements for protecting other information. It is necessary to preserve the cover greatly due to its importance on the reception side as medical staff use this information to provide a diagnosis to save a patient's life. If the cover is tampered with, this leads to failure in achieving the goal of telemedicine. Therefore, this work provides an investigation of information security techniques in medical imaging, focusing on security goals. Encrypting a message before hiding them gives an extra layer of security, and thus, will provide an excellent solution to protect the sensitive information of patients during the sharing of medical information. Medical image steganography is a special case of image steganography, while Digital Imaging and Communications in Medicine (DICOM) is the backbone of all medical imaging divisions, whereby it is most broadly used to store and transmit medical images. The main objective of this study is to provide a general idea of what Least Significant Bit-based (LSB) steganography techniques have achieved in medical images.


Diagnostics ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1384
Author(s):  
Yin Dai ◽  
Yifan Gao ◽  
Fayu Liu

Over the past decade, convolutional neural networks (CNN) have shown very competitive performance in medical image analysis tasks, such as disease classification, tumor segmentation, and lesion detection. CNN has great advantages in extracting local features of images. However, due to the locality of convolution operation, it cannot deal with long-range relationships well. Recently, transformers have been applied to computer vision and achieved remarkable success in large-scale datasets. Compared with natural images, multi-modal medical images have explicit and important long-range dependencies, and effective multi-modal fusion strategies can greatly improve the performance of deep models. This prompts us to study transformer-based structures and apply them to multi-modal medical images. Existing transformer-based network architectures require large-scale datasets to achieve better performance. However, medical imaging datasets are relatively small, which makes it difficult to apply pure transformers to medical image analysis. Therefore, we propose TransMed for multi-modal medical image classification. TransMed combines the advantages of CNN and transformer to efficiently extract low-level features of images and establish long-range dependencies between modalities. We evaluated our model on two datasets, parotid gland tumors classification and knee injury classification. Combining our contributions, we achieve an improvement of 10.1% and 1.9% in average accuracy, respectively, outperforming other state-of-the-art CNN-based models. The results of the proposed method are promising and have tremendous potential to be applied to a large number of medical image analysis tasks. To our best knowledge, this is the first work to apply transformers to multi-modal medical image classification.


2016 ◽  
Vol 28 (7) ◽  
pp. e3142 ◽  
Author(s):  
Simone Soderi ◽  
Lorenzo Mucchi ◽  
Matti Hämäläinen ◽  
Alessandro Piva ◽  
Jari Iinatti

2007 ◽  
Vol 07 (04) ◽  
pp. 663-687 ◽  
Author(s):  
ASHISH KHARE ◽  
UMA SHANKER TIWARY

Wavelet based denoising is an effective way to improve the quality of images. Various methods have been proposed for denoising using real-valued wavelet transform. Complex valued wavelets exist but are rarely used. The complex wavelet transform provides phase information and it is shift invariant in nature. In medical image denoising, both removal of phase incoherency as well as maintaining the phase coherency are needed. This paper is an attempt to explore and apply the complex Daubechies wavelet transform for medical image denoising. We have proposed a method to compute a complex threshold, which does not depend on any assumed model of noise. In this sense this is a "universal" method. The proposed complex-domain shrinkage function depends on mean, variance and median of wavelet coefficients. To test the effectiveness of the proposed method, we have computed the input and output SNR and PSNR of various types of medical images. The method gives an improvement for Gaussian additive, Speckle and Salt-&-Pepper noise as well as for the mixture of these noise types for a range of noisy images with 15 db to 30 db noise levels and outperforms other real-valued wavelet transform based methods. The application of the proposed method to Ultrasound, X-ray and MRI images is demonstrated in the experiments.


2020 ◽  
Vol 7 (4) ◽  
pp. 79-86
Author(s):  
Nagadevi Darapureddy ◽  
Nagaprakash Karatapu ◽  
Tirumala Krishna Battula

This paper examines a hybrid pattern i.e. Local derivative Vector pattern and comparasion of this pattern over other different patterns for content-based medical image retrieval. In recent years Pattern-based texture analysis has significant popularity for a variety of tasks like image recognition, image and texture classification, and object detection, etc. In literature, different patterns exist for texture analysis. This paper aims at forming a hybrid pattern compared in terms of precision, recall and F1-score with different patterns like Local Binary Pattern (LBP), Local Derivative Pattern (LDP), Completed Local Binary Pattern (CLBP), Local Tetra Pattern (LTrP), Local Vector Pattern (LVP) and Local Anisotropic Pattern (LAP) which were applied on medical images for image retrieval. The proposed method is evaluated on different modalities of medical images. The results of the proposed hybrid pattern show biased performance compared to the state-of-the-art. So this can further extended with other pattern to form a hybrid pattern.


Sign in / Sign up

Export Citation Format

Share Document