scholarly journals Usefulness of a Concept Called Autonomous Selection

Author(s):  
Idan S. Solon

Here, I introduce a concept called autonomous selection to refer to a source of selection that is part of the individuals upon which it acts. The concept is motivated by a set of phenomena with the following characteristics: Natural selection shaped a variant (e.g., gene, epigenetic mark, or combination thereof) to act in a manner that reduces the frequency of one or more heritable traits of the individual in which it is located if those traits are detrimental to individual or group fitness. Phenomena with these characteristics are peculiar to traditional evolutionary theory but have been identified rather frequently in recent decades. They are also relevant to adaptive evolution: By reducing the frequency of a trait detrimental to fitness, the variant accelerates the evolution of adaptations, which allows its holders to adapt better to constantly changing environments. The variant is shaped by (natural) selection, but also does (autonomous) selection. Several phenomena with these characteristics have been invoked by proponents of the extended evolutionary synthesis (EES). The concept of autonomous selection helps resolve some of the controversy surrounding the EES: EES proponents call attention to the incompleteness of contemporary theory, emphasizing individuals’ processes that influence which adaptations those individuals evolve. I argue for the special importance of individuals’ processes that do not just influence those individuals’ adaptations, but also accelerate the adaptive evolution of those individuals. All known phenomena that fit this description are examples of autonomous selection. Other phenomena raised by EES proponents do not meet this threshold.

2017 ◽  
Vol 7 (5) ◽  
pp. 20160145 ◽  
Author(s):  
Douglas J. Futuyma

Evolutionary theory has been extended almost continually since the evolutionary synthesis (ES), but except for the much greater importance afforded genetic drift, the principal tenets of the ES have been strongly supported. Adaptations are attributable to the sorting of genetic variation by natural selection, which remains the only known cause of increase in fitness. Mutations are not adaptively directed, but as principal authors of the ES recognized, the material (structural) bases of biochemistry and development affect the variety of phenotypic variations that arise by mutation and recombination. Against this historical background, I analyse major propositions in the movement for an ‘extended evolutionary synthesis’. ‘Niche construction' is a new label for a wide variety of well-known phenomena, many of which have been extensively studied, but (as with every topic in evolutionary biology) some aspects may have been understudied. There is no reason to consider it a neglected ‘process’ of evolution. The proposition that phenotypic plasticity may engender new adaptive phenotypes that are later genetically assimilated or accommodated is theoretically plausible; it may be most likely when the new phenotype is not truly novel, but is instead a slight extension of a reaction norm already shaped by natural selection in similar environments. However, evolution in new environments often compensates for maladaptive plastic phenotypic responses. The union of population genetic theory with mechanistic understanding of developmental processes enables more complete understanding by joining ultimate and proximate causation; but the latter does not replace or invalidate the former. Newly discovered molecular phenomena have been easily accommodated in the past by elaborating orthodox evolutionary theory, and it appears that the same holds today for phenomena such as epigenetic inheritance. In several of these areas, empirical evidence is needed to evaluate enthusiastic speculation. Evolutionary theory will continue to be extended, but there is no sign that it requires emendation.


Author(s):  
James Aaron Green

Abstract In Geological Evidences of the Antiquity of Man (1863), Charles Lyell appraised the distinct contribution made by his protégé, Charles Darwin (On the Origin of Species (1859)), to evolutionary theory: ‘Progression … is not a necessary accompaniment of variation and natural selection [… Darwin’s theory accounts] equally well for what is called degradation, or a retrogressive movement towards a simple structure’. In Rhoda Broughton’s first novel, Not Wisely, but Too Well (1867), written contemporaneously with Lyell’s book, the Crystal Palace at Sydenham prompts precisely this sort of Darwinian ambivalence to progress; but whether British civilization ‘advance[s] or retreat[s]’, her narrator adds that this prophesized state ‘will not be in our days’ – its realization exceeds the single lifespan. This article argues that Not Wisely, but Too Well is attentive to the irreconcilability of Darwinism to the Victorian ‘idea of progress’: Broughton’s novel, distinctly from its peers, raises the retrogressive and nihilistic potentials of Darwin’s theory and purposes them to reflect on the status of the individual in mid-century Britain.


2021 ◽  
Author(s):  
Rasmus Skern-Mauritzen ◽  
Thomas Nygaard Mikkelsen

Life is information dancing through time, embedded in matter and shaped by natural selection. Few biologists or philosophers concerned with evolution would object to this description. This apparent accord could be taken to indicate universal agreement on the forces shaping evolution; but the devil is in the details and disagreement is apparent if one looks behind the curtain. The decade strong prevalent paradigm of the Modern Synthesis holds the position that evolution happens by random changes and natural selection acting on genomic inheritance. But there is a new kid on the block; the proponents of an Extended Evolutionary Synthesis argue that inheritance is more than genomes and includes epigenetic information, niche constructs (ranging from the meerkats dens to humans railroads) and culture among other factors – and that these factors are both inheritance and a force shaping evolution. Here we introduce The Information Continuum Hypothesis of Evolution; a conceptual framework that focus on the inherited information rather than the diverse representations this inherited information may have (DNA, RNA, epigenetic markers, proteins, culture etc.). As a tool we introduce the concept “hereditome” to describe the combined inherited representations of information. We believe this framework may help bridge the apparent gap between the Modern Synthesis and the Extended Evolutionary Synthesis.


Author(s):  
David Sloan Wilson

People have always been fascinated by cooperation and altruism in animals, in part to shed light on our own propensity or reluctance to help others. Darwin’s theory added a certain urgency to the subject because the principle of “nature red in tooth and claw” superficially seems to deny the possibility of altruism and cooperation altogether. Some evolutionary biologists have accepted and even reveled in this vision of nature, giving rise to statements such as “the economy of nature is competitive from beginning to end . . . scratch an ‘altruist’ and watch a hypocrite bleed”. Others have gone so far in the opposite direction as to proclaim the entire earth a unit that cooperatively regulates its own atmosphere (Lovelock 1979). The truth is somewhere between these two extremes; cooperation and altruism can evolve but only if special conditions are met. As might be expected from the polarized views outlined above, achieving this middle ground has been a difficult process. Science is often portrayed as a heroic march to the truth, but in this case, it is more like the Three Stooges trying to move a piano. I don’t mean to underestimate the progress that been made—the piano has been moved—but we need to appreciate the twists, turns, and reversals in addition to the final location. To see why cooperation and altruism pose a problem for evolutionary theory, consider the evolution of a nonsocial adaptation, such as cryptic coloration. Imagine a population of moths that vary in the degree to which they match their background. Every generation, the most conspicuous moths are detected and eaten by predators while the most cryptic moths survive and reproduce. If offspring resemble their parents, then the average moth will become more cryptic with every generation. Anyone who has beheld a moth that looks exactly like a leaf, right down to the veins and simulated herbivore damage, cannot fail to be impressed by the power of natural selection to evolve breathtaking adaptations at the individual level. Now consider the same process for a social adaptation, such as members of a group warning each other about approaching predators.


Author(s):  
Gunter Wagner ◽  
Gary Tomlinson

Since its inception, evolutionary theory has experienced a number of extensions. The most important of these took the forms of the Modern Evolutionary Synthesis (MES), embracing genetics and population biology in the early 20th century, and the Extended Evolutionary Synthesis (EES) of the last thirty years, embracing, among other factors, non-genetic forms of inheritance. While we appreciate the motivation for this recent extension, we argue that it does not go far enough, since it restricts itself to widening explanations of adaptation by adding mechanisms of inheritance and variation. Here we argue that a more thoroughgoing extension is needed, one that broadens the explanatory scope of evolutionary theory. In addition to adaptation and its various mechanisms, evolutionary theory must recognize as a distinct intellectual challenge the origin of what we call “historical kinds.” Under historical kinds we include any process that acquires a quasi-independent and traceable lineage-history in biological and cultural evolution. A limited number of historical kinds have been recognized in evolutionary biology, and corresponding research programs have been formed around them. The best characterized examples are biological species and genes. We propose that the conceptual category of historical kinds can and needs to be extended, and we develop the notion of a historical kind in a series of paradigmatic exemplars, from genes and cell types to rituals and music. The explanation of the origin of historical kinds should be a main objective of biological and cultural sciences.


2015 ◽  
Vol 282 (1813) ◽  
pp. 20151019 ◽  
Author(s):  
Kevin N. Laland ◽  
Tobias Uller ◽  
Marcus W. Feldman ◽  
Kim Sterelny ◽  
Gerd B. Müller ◽  
...  

Scientific activities take place within the structured sets of ideas and assumptions that define a field and its practices. The conceptual framework of evolutionary biology emerged with the Modern Synthesis in the early twentieth century and has since expanded into a highly successful research program to explore the processes of diversification and adaptation. Nonetheless, the ability of that framework satisfactorily to accommodate the rapid advances in developmental biology, genomics and ecology has been questioned. We review some of these arguments, focusing on literatures (evo-devo, developmental plasticity, inclusive inheritance and niche construction) whose implications for evolution can be interpreted in two ways—one that preserves the internal structure of contemporary evolutionary theory and one that points towards an alternative conceptual framework. The latter, which we label the ‘extended evolutionary synthesis' (EES), retains the fundaments of evolutionary theory, but differs in its emphasis on the role of constructive processes in development and evolution, and reciprocal portrayals of causation. In the EES, developmental processes, operating through developmental bias, inclusive inheritance and niche construction, share responsibility for the direction and rate of evolution, the origin of character variation and organism–environment complementarity. We spell out the structure, core assumptions and novel predictions of the EES, and show how it can be deployed to stimulate and advance research in those fields that study or use evolutionary biology.


Author(s):  
Gunter Wagner ◽  
Gary Tomlinson

Since its inception, evolutionary theory has experienced a number of extensions. The most important of these took the forms of the Modern Evolutionary Synthesis (MES), embracing genetics and population biology in the early 20th century, and the Extended Evolutionary Synthesis (EES) of the last thirty years, embracing, among other factors, non-genetic forms of inheritance. While we appreciate the motivation for this recent extension, we argue that it does not go far enough, since it restricts itself to widening explanations of adaptation by adding mechanisms of inheritance and variation. A more thoroughgoing extension is needed, one that widens the explanatory scope of evolutionary theory. In addition to adaptation and its various mechanisms, evolutionary theory must recognize as a distinct intellectual challenge the origin of what we call “historical kinds.” Under historical kinds we include any process that acquires a quasi-independent and traceable lineage-history in biological and cultural evolution. We develop the notion of a historical kind in a series of paradigmatic exemplars, from genes and homologues to rituals and music, and we propose a preliminary characterization.


2021 ◽  
Author(s):  
Erik Svensson

The last decades have seen frequent calls for a more extended evolutionary synthesis (EES) that will supposedly overcome the limitations in the current evolutionary framework with its intellectual roots in the Modern Synthesis (MS). Some radical critics even want to entirely abandon the current evolutionary framework, claiming that the MS (often erroneously labelled “Neo-Darwinism”) is outdated, and will soon be replaced by an entirely new framework, such as the Third Way of Evolution (TWE). Such criticisms are not new, but have repeatedly re-surfaced every decade since the formation of the MS, and were particularly articulated by developmental biologist Conrad Waddington and paleontologist Stephen Jay Gould. Waddington, Gould and later critics argued that the MS was too narrowly focused on genes and natural selection, and that it ignored developmental processes, epigenetics, paleontology and macroevolutionary phenomena. More recent critics partly recycle these old arguments and argue that non-genetic inheritance, niche construction, phenotypic plasticity and developmental bias necessitate major revision of evolutionary theory. Here I discuss these supposed challenges, taking a historical perspective and tracing these arguments back to Waddington and Gould. I dissect the old arguments by Waddington, Gould and more recent critics that the MS was excessively gene centric and became increasingly “hardened” over time and narrowly focused on natural selection. Recent critics have consciously or unconsciously exaggerated the long-lasting influence of the MS on contemporary evolutionary biology and have underestimated many post-Synthesis developments, particularly Neutral Theory and evolutionary quantitative genetics. Critics have also painted a biased picture of the MS as a more monolithic research tradition than it ever was, and have downplayed the pluralistic nature of contemporary evolutionary biology, particularly the long-lasting influence of Sewall Wright with his emphasis on gene interactions and stochasticity. Finally, I outline and visualize the conceptually split landscape of contemporary evolutionary biology, with four different stably coexisting analytical frameworks: adaptationism, mutationism, neutralism and selectionism. I suggest that the field can accommodate the challenges raised by critics, although structuralism (“EvoDevo”) and macroevolution remain to be conceptually integrated within mainstream evolutionary theory.


2017 ◽  
Vol 18 (1) ◽  
pp. 1-9 ◽  
Author(s):  
Samuel R. Levin ◽  
Thomas W. Scott ◽  
Helen S. Cooper ◽  
Stuart A. West

AbstractMaking predictions about aliens is not an easy task. Most previous work has focused on extrapolating from empirical observations and mechanistic understanding of physics, chemistry and biology. Another approach is to utilize theory to make predictions that are not tied to details of Earth. Here we show how evolutionary theory can be used to make predictions about aliens. We argue that aliens will undergo natural selection – something that should not be taken for granted but that rests on firm theoretical grounds. Given aliens undergo natural selection we can say something about their evolution. In particular, we can say something about how complexity will arise in space. Complexity has increased on the Earth as a result of a handful of events, known as the major transitions in individuality. Major transitions occur when groups of individuals come together to form a new higher level of the individual, such as when single-celled organisms evolved into multicellular organisms. Both theory and empirical data suggest that extreme conditions are required for major transitions to occur. We suggest that major transitions are likely to be the route to complexity on other planets, and that we should expect them to have been favoured by similarly restrictive conditions. Thus, we can make specific predictions about the biological makeup of complex aliens.


Sign in / Sign up

Export Citation Format

Share Document