scholarly journals The structure of evolutionary theory: Beyond Neo-Darwinism, Neo-Lamarckism and biased historical narratives about the Modern Synthesis

2021 ◽  
Author(s):  
Erik Svensson

The last decades have seen frequent calls for a more extended evolutionary synthesis (EES) that will supposedly overcome the limitations in the current evolutionary framework with its intellectual roots in the Modern Synthesis (MS). Some radical critics even want to entirely abandon the current evolutionary framework, claiming that the MS (often erroneously labelled “Neo-Darwinism”) is outdated, and will soon be replaced by an entirely new framework, such as the Third Way of Evolution (TWE). Such criticisms are not new, but have repeatedly re-surfaced every decade since the formation of the MS, and were particularly articulated by developmental biologist Conrad Waddington and paleontologist Stephen Jay Gould. Waddington, Gould and later critics argued that the MS was too narrowly focused on genes and natural selection, and that it ignored developmental processes, epigenetics, paleontology and macroevolutionary phenomena. More recent critics partly recycle these old arguments and argue that non-genetic inheritance, niche construction, phenotypic plasticity and developmental bias necessitate major revision of evolutionary theory. Here I discuss these supposed challenges, taking a historical perspective and tracing these arguments back to Waddington and Gould. I dissect the old arguments by Waddington, Gould and more recent critics that the MS was excessively gene centric and became increasingly “hardened” over time and narrowly focused on natural selection. Recent critics have consciously or unconsciously exaggerated the long-lasting influence of the MS on contemporary evolutionary biology and have underestimated many post-Synthesis developments, particularly Neutral Theory and evolutionary quantitative genetics. Critics have also painted a biased picture of the MS as a more monolithic research tradition than it ever was, and have downplayed the pluralistic nature of contemporary evolutionary biology, particularly the long-lasting influence of Sewall Wright with his emphasis on gene interactions and stochasticity. Finally, I outline and visualize the conceptually split landscape of contemporary evolutionary biology, with four different stably coexisting analytical frameworks: adaptationism, mutationism, neutralism and selectionism. I suggest that the field can accommodate the challenges raised by critics, although structuralism (“EvoDevo”) and macroevolution remain to be conceptually integrated within mainstream evolutionary theory.

2017 ◽  
Vol 7 (5) ◽  
pp. 20160145 ◽  
Author(s):  
Douglas J. Futuyma

Evolutionary theory has been extended almost continually since the evolutionary synthesis (ES), but except for the much greater importance afforded genetic drift, the principal tenets of the ES have been strongly supported. Adaptations are attributable to the sorting of genetic variation by natural selection, which remains the only known cause of increase in fitness. Mutations are not adaptively directed, but as principal authors of the ES recognized, the material (structural) bases of biochemistry and development affect the variety of phenotypic variations that arise by mutation and recombination. Against this historical background, I analyse major propositions in the movement for an ‘extended evolutionary synthesis’. ‘Niche construction' is a new label for a wide variety of well-known phenomena, many of which have been extensively studied, but (as with every topic in evolutionary biology) some aspects may have been understudied. There is no reason to consider it a neglected ‘process’ of evolution. The proposition that phenotypic plasticity may engender new adaptive phenotypes that are later genetically assimilated or accommodated is theoretically plausible; it may be most likely when the new phenotype is not truly novel, but is instead a slight extension of a reaction norm already shaped by natural selection in similar environments. However, evolution in new environments often compensates for maladaptive plastic phenotypic responses. The union of population genetic theory with mechanistic understanding of developmental processes enables more complete understanding by joining ultimate and proximate causation; but the latter does not replace or invalidate the former. Newly discovered molecular phenomena have been easily accommodated in the past by elaborating orthodox evolutionary theory, and it appears that the same holds today for phenomena such as epigenetic inheritance. In several of these areas, empirical evidence is needed to evaluate enthusiastic speculation. Evolutionary theory will continue to be extended, but there is no sign that it requires emendation.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Michael K Skinner ◽  
Eric E Nilsson

Abstract The current evolutionary biology theory primarily involves genetic alterations and random DNA sequence mutations to generate the phenotypic variation required for Darwinian natural selection to act. This neo-Darwinian evolution is termed the Modern Evolution Synthesis and has been the primary paradigm for nearly 100 years. Although environmental factors have a role in neo-Darwinian natural selection, Modern Evolution Synthesis does not consider environment to impact the basic molecular processes involved in evolution. An Extended Evolutionary Synthesis has recently developed that extends the modern synthesis to consider non-genetic processes. Over the past few decades, environmental epigenetics research has been demonstrated to regulate genetic processes and directly generate phenotypic variation independent of genetic sequence alterations. Therefore, the environment can on a molecular level through non-genetic (i.e. epigenetic) mechanisms directly influence phenotypic variation, genetic variation, inheritance and adaptation. This direct action of the environment to alter phenotype that is heritable is a neo-Lamarckian concept that can facilitate neo-Darwinian (i.e. Modern Synthesis) evolution. The integration of genetics, epigenetics, Darwinian theory, Lamarckian concepts, environment, and epigenetic inheritance provides a paradigm shift in evolution theory. The role of environmental-induced epigenetic transgenerational inheritance in evolution is presented to describe a more unified theory of evolutionary biology.


2021 ◽  
Author(s):  
Rasmus Skern-Mauritzen ◽  
Thomas Nygaard Mikkelsen

Life is information dancing through time, embedded in matter and shaped by natural selection. Few biologists or philosophers concerned with evolution would object to this description. This apparent accord could be taken to indicate universal agreement on the forces shaping evolution; but the devil is in the details and disagreement is apparent if one looks behind the curtain. The decade strong prevalent paradigm of the Modern Synthesis holds the position that evolution happens by random changes and natural selection acting on genomic inheritance. But there is a new kid on the block; the proponents of an Extended Evolutionary Synthesis argue that inheritance is more than genomes and includes epigenetic information, niche constructs (ranging from the meerkats dens to humans railroads) and culture among other factors – and that these factors are both inheritance and a force shaping evolution. Here we introduce The Information Continuum Hypothesis of Evolution; a conceptual framework that focus on the inherited information rather than the diverse representations this inherited information may have (DNA, RNA, epigenetic markers, proteins, culture etc.). As a tool we introduce the concept “hereditome” to describe the combined inherited representations of information. We believe this framework may help bridge the apparent gap between the Modern Synthesis and the Extended Evolutionary Synthesis.


Author(s):  
Gunter Wagner ◽  
Gary Tomlinson

Since its inception, evolutionary theory has experienced a number of extensions. The most important of these took the forms of the Modern Evolutionary Synthesis (MES), embracing genetics and population biology in the early 20th century, and the Extended Evolutionary Synthesis (EES) of the last thirty years, embracing, among other factors, non-genetic forms of inheritance. While we appreciate the motivation for this recent extension, we argue that it does not go far enough, since it restricts itself to widening explanations of adaptation by adding mechanisms of inheritance and variation. Here we argue that a more thoroughgoing extension is needed, one that broadens the explanatory scope of evolutionary theory. In addition to adaptation and its various mechanisms, evolutionary theory must recognize as a distinct intellectual challenge the origin of what we call “historical kinds.” Under historical kinds we include any process that acquires a quasi-independent and traceable lineage-history in biological and cultural evolution. A limited number of historical kinds have been recognized in evolutionary biology, and corresponding research programs have been formed around them. The best characterized examples are biological species and genes. We propose that the conceptual category of historical kinds can and needs to be extended, and we develop the notion of a historical kind in a series of paradigmatic exemplars, from genes and cell types to rituals and music. The explanation of the origin of historical kinds should be a main objective of biological and cultural sciences.


Author(s):  
Vassiliki Betty Smocovitis

The “modern synthesis” generally refers to the early to mid-century formulation of evolutionary theory that reconciled classical Darwinian selection theory with a newer population-oriented view of Mendelian genetics that attempted to explain the origin of biological diversity. It draws on the title of zoologist Julian S. Huxley’s book of 1943 titled Evolution: The Modern Synthesis, a semi-popular account of evolution that ushered in this “modern” synthetic view of evolution. Covering an interval of time approximately between 1920–1950, it also refers to developments in understanding evolution that drew on a range of disciplines that were synthesized or brought to consensus that generally include systematics, paleontology, and botany with a populational view of evolutionary genetics. Whether or not it served to unify the study of evolution, or to unify the disparate biological sciences—and whether or not it led to the emergence of a science of evolutionary biology, as some of its proponents have claimed—remains a topic for discussion. Though they do not refer to precisely the same things or share identical meanings, the phrase “modern synthesis” has overlapped with terms such as the “evolutionary synthesis,” coined and used especially by Ernst Mayr and William B. Provine, to refer to the historical event, as well as terms such as Neo-Darwinian theory or Neo-Darwinism (though criticism has been made regarding the latter term’s applicability to the mid-century developments in evolutionary theory). As Ernst Mayr noted, the term “Neo-Darwinism” was first coined and used by George John Romanes in 1895 to refer to a revision of Charles Darwin’s theory first formulated in 1859, which included Lamarckian inheritance. The extent to which the modern synthesis, and the evolutionary synthesis map with what is also called the synthetic theory, is open for discussion as is specific understanding of the term. For the most part, there is little in the way of consensus or agreement by scientists, philosophers, and historians as to what “the synthesis” (the abbreviated reference) precisely means, and what (if anything) specifically occurred of a general nature in studies of evolution, broadly construed, in the interval of time between 1920–1950.


Author(s):  
Kevin Laland

Niche construction is the process whereby organisms, through their activities and choices, modify their own and each other’s niches. Examples of niche construction include the building of nests, burrows, and mounds and alternation of physical and chemical conditions by animals, and the creation of shade, influencing of wind speed, and alternation of nutrient cycling by plants. Here the “niche” is construed as the set of natural selection pressures to which the population is exposed (discussed in Ecology). By transforming natural selection pressures, niche construction generates feedback in evolution, on a scale hitherto underestimated and in a manner that alters the evolutionary dynamic. Niche construction also plays a critical role in ecology, in which it supports ecosystem engineering and eco-evolutionary feedbacks and, in part, regulates the flow of energy and nutrients through ecosystems. Niche construction theory is the body of formal (e.g., population genetic, population ecology) mathematical theory that explores niche construction’s evolutionary and ecological ramifications. Many organisms construct developmental environments for their offspring or modify environmental states for other descendants, a process known as “ecological inheritance.” In recent years, this ecological inheritance has been widely recognized as a core component of extra-genetic inheritance, and it is central to attempts within evolutionary biology to broaden the concept of heredity beyond transmission genetics. The development of many organisms—and the recurrence of traits across generations—has been found to depend critically on the construction of developmental environments by ancestors. Historically, the study of niche construction has been contentious because theoretical and empirical findings from niche construction theory appear to challenge some orthodox accounts of evolution. Many researchers studying niche construction embrace an alternative perspective in which niche construction is regarded as a fundamental evolutionary process in its own right, as well as a major source of adaptation. This perspective is aligned intellectually with other progressive movements within evolutionary biology that are calling for an extended evolutionary synthesis. In addition to ecology and evolution, niche construction theory has had an impact on a variety of disciplines, including archaeology, biological anthropology, conservation biology, developmental biology, earth sciences, and philosophy of biology.


2015 ◽  
Vol 282 (1813) ◽  
pp. 20151019 ◽  
Author(s):  
Kevin N. Laland ◽  
Tobias Uller ◽  
Marcus W. Feldman ◽  
Kim Sterelny ◽  
Gerd B. Müller ◽  
...  

Scientific activities take place within the structured sets of ideas and assumptions that define a field and its practices. The conceptual framework of evolutionary biology emerged with the Modern Synthesis in the early twentieth century and has since expanded into a highly successful research program to explore the processes of diversification and adaptation. Nonetheless, the ability of that framework satisfactorily to accommodate the rapid advances in developmental biology, genomics and ecology has been questioned. We review some of these arguments, focusing on literatures (evo-devo, developmental plasticity, inclusive inheritance and niche construction) whose implications for evolution can be interpreted in two ways—one that preserves the internal structure of contemporary evolutionary theory and one that points towards an alternative conceptual framework. The latter, which we label the ‘extended evolutionary synthesis' (EES), retains the fundaments of evolutionary theory, but differs in its emphasis on the role of constructive processes in development and evolution, and reciprocal portrayals of causation. In the EES, developmental processes, operating through developmental bias, inclusive inheritance and niche construction, share responsibility for the direction and rate of evolution, the origin of character variation and organism–environment complementarity. We spell out the structure, core assumptions and novel predictions of the EES, and show how it can be deployed to stimulate and advance research in those fields that study or use evolutionary biology.


2019 ◽  
Vol 59 (3) ◽  
pp. 493-502 ◽  
Author(s):  
Mark E Olson

AbstractPlant ecology is increasingly turning to evolutionary questions, just as evolutionary biology pushes out of the strictures of the Modern Synthesis into what some regard as an “Extended Evolutionary Synthesis.” As plant ecology becomes increasingly evolutionary, it is essential to ask how aspects of the Extended Synthesis might impinge on plant ecological theory and practice. I examine the contribution of plant evolutionary ecology to niche construction theory, as well as the potential for developmental systems theory and genes-as-followers adaptive evolution, all important post-Modern Synthesis themes, in providing novel perspectives for plant evolutionary ecology. I also examine ways that overcoming dichotomies such as “genetic vs. plastic” and “constraint vs. adaptation” provide fertile opportunities for plant evolutionary ecologists. Along the same lines, outgrowing vague concepts such as “stress” and replacing them with more precise terminology in all cases provides vastly increased causal clarity. As a result, the synthetic path that plant ecologists are blazing, becoming more evolutionary every year, bodes extremely well for the field, with vast potential for expansion into important scientific territory.


Author(s):  
D.M. Walsh

Evolutionary theory has long been influenced by modern synthesis thinking, which focuses on the theoretical primacy of genes and the fractionation of evolution into four discrete, quasi-independent processes: (i) inheritance, (ii) development, (iii) mutation, and (iv) natural selection. Recent challenges to modern synthesis orthodoxy, leveled at the fractionation of evolution and the attendant theoretical privilege accorded to genes, are driven by empirical advances in the understanding of inheritance and development. This article argues that inheritance holism, the idea that the contribution of genes to the pattern of inheritance cannot generally be differentiated from the contribution of extragenetic causes, invalidates the modern synthesis conception of inheritance as the transmission of replicants. Moreover, recent empirical understandings of development erode the fractionated view of evolution, which has misconstrued the role of natural selection. Development not only involves inheritance and the generation of novelties but is the source of the adaptive bias in evolution.


PARADIGMI ◽  
2012 ◽  
pp. 45-58
Author(s):  
Massimo Pigliucci

Evolutionary theory went through several phases ever since the publication of the original Darwin-Wallace paper, including neo-Darwinism, the Modern Synthesis and, possibly, a currently ongoing Extended Synthesis. In this paper I tackle the question of whether evolutionary biology ever underwent anything like a Kuhn-style paradigm shift. I conclude that it did not, and is not likely to do so in the future, although a paradigmlike shift did occur early on, at the transition between natural theology and Darwinism. Parole chiave: Darwinismo, Paradigmi, Sintesi estesa, Sintesi moderna, Teologia naturale


Sign in / Sign up

Export Citation Format

Share Document