scholarly journals Synthesis Polymer Styrene Butadiene Hybrid Latex with Laponite Organoclay as Filler via Emulsion Polymerization Technique for Application in Paper Coating

Author(s):  
Bambang Soegijono ◽  
Johannes Chanra ◽  
Zhongwu Zheng ◽  
Puke Mi

Synthesis of styrene butadiene hybrid latex was performed via emulsion polymerization technique using various amount of laponite clay as filler. Laponite clay was modified with cationic surfactant methyl triphenylphosphonium bromide (MTPB) with ion exchange technique prior to polymerization process. The main objective of the modification is to render the surface of the clay layers to more organophilic. Emulsion polymerization was performed under semi batch process using 2 L laboratory stainless steel reactor with temperature 85°C to 90°C for 8 hours. Polymer hybrid styrene butadiene latex was characterized for its physical and chemical properties with standard ASTM Methods. Characterization of its binding and printing properties were carried out with standard testing method (TAPPI Methods) using single coating formulation on 80 gsm woodfree paper. Polymer hybrid latex based on styrene and butadiene monomers with laponite clay enhanced binding and printing properties of coated paper, addition of laponite clay to 6.0 wt % increased the binding resistance of the coated paper two times higher than pure latex. Reducing binder level become possible for cost saving.

Author(s):  
Duc Nguyen ◽  
Vien T. Huynh ◽  
Algirdas K. Serelis ◽  
Tim Davey ◽  
Olga Paravagna ◽  
...  

AbstractWe describe a simplified method to synthesize film forming polymer Janus particles by phase separation during RAFT-based free radical emulsion polymerization. Fully crosslinked snowman- or football-shaped polystyrene Janus particles (PSJPs) were first produced in a one-step batch process using amphiphilic triblock macro-RAFT copolymers as stabilizers. Such particles were in turn employed as seeds in a continuous emulsion polymerization in which a monomer mixture of methyl methacrylate (MMA) and butyl acrylate (BA) (1/1 by weight) was constantly injected into the reaction in the presence of a water soluble initiator. The added monomers wetted seed particle surface and their polymerization led to formations of 93-nm film forming single- or two-headed Janus particles. The resulted latex was successfully used to disperse and encapsulate solid calcite extender. Graphical abstract


2021 ◽  
Vol 1028 ◽  
pp. 263-268
Author(s):  
Rafly Aprilian ◽  
Mas Ayu Elita Hafizah ◽  
Azwar Manaf ◽  
Andreas

Synthesis of Polyvinyl Acetate (PVAc) through the conversion of Vinyl Acetate Monomer (VAM) was carried out by emulsion polymerization method assisted by thermal initiator Ammonium persulfate (APS) under reaction temperature was kept at 70 °C – 80 °C with 5 hours of reaction time and agitation speed at 300 rpm. The polymerization reaction was running used batch process technique where is all components were mixed all together simultaneously. A set of polymerization reactions was conducted when the absence of surfactant and cationic and amphoteric surfactant presence. The monomer chain's double bond was found at 1645 cm-1 was measured by FTIR Spectrophotometer did not disappear after polymerization reaction was utterly done. The spectrum FTIR of Polyvinyl acetate did not explicitly found at 1644 cm-1. During the reaction, characterization was conducted by measuring the solid content value where the maximum solid content was achieved was 6,1 % when using Amphoteric surfactant while the lowest solid content was obtained when the absence of surfactant. Other parameters were conducted to observe the acidity value by pH Meter.


Author(s):  
Rushil Pingali ◽  
Sourabh K. Saha

Abstract Two-photon lithography (TPL) is a polymerization-based direct laser writing process that is capable of fabricating arbitrarily complex three-dimensional (3D) structures with submicron features. Traditional TPL techniques have limited scalability due to the slow point-by-point serial writing scheme. The femtosecond projection TPL (FP-TPL) technique increases printing rate by a thousand times by enabling layer-by-layer parallelization. However, parallelization alters the time and the length scales of the underlying polymerization process. It is therefore challenging to apply the models of serial TPL to accurately predict process outcome during FP-TPL. To solve this problem, we have generated a finite element model of the polymerization process on the time and length scales relevant to FP-TPL. The model is based on the reaction-diffusion mechanism that underlies polymerization. We have applied this model to predict the geometry of nanowires printed under a variety of conditions and compared these predictions against empirical data. Our model accurately predicts the nanowire widths. However, accuracy of aspect ratio prediction is hindered by uncertain values of the chemical properties of the photopolymer. Nevertheless, our results demonstrate that the reaction-diffusion model can accurately capture the effect of controllable parameters on FP-TPL process outcome and can therefore be used for process control and optimization.


2019 ◽  
Vol 35 (3) ◽  
pp. 997-1003
Author(s):  
Sonu Sharma ◽  
Sitansh Sharma ◽  
Niraj Upadhyay

Bitumen is used worldwide in the construction of flexible pavements and because of its wide applicability its performance is needed to be improved in all regards like, Chemical, and thermal stability, fatigue life, moisture susceptibility, mechanical strength, temperature susceptibility, rutting resistance, ageing resistance, tensile strength, viscosity, stiffness etc. In this connection, researchers have used various modifiers to improve the pavement performance. The present paper provides a brief review of different modifiers in road making industry. Some popular polymer modifiers like low density polythene, high density polythene, polypropylene, ethyl vinyl acetate, styrene butadiene styrene and industrial waste are reviewed in terms of their role in bitumen modification. It also discusses enhancement in properties of bitumen after modification in order to improve properties of pavement. Through the reviewed literature, it is found that the addition of the polymers to bitumen tends to enhance fatigue and cracking resistance mainly. The future development and recommendation in modifiers for bitumen modification are also suggested in the end.


2006 ◽  
Vol 6 (2) ◽  
pp. 82
Author(s):  
Iwan Harsono ◽  
Herman Hindarso ◽  
Nani Indraswati

It has been long recognized that emulsion polymerization is a complex heterogeneous process involving transport of monomers and other species and free radicals between aqueous phase and organic phases. Though there are a number of models available in the literature, most of them deal only with specific aspects in emulsion polymerization and are far from being general. To simulate this complicated process and to achieve an adequate level of understanding, a Polymer Plus' software from Aspen Technology, Inc. has been used. The objective of this work is to illustrate the principle use of Polymers Plus' and to simulate and analysis the free-radical seeded emulsion copolymerization of styrene-butadiene process model in a semi-batch reactor. The base case simulation can be used to gain process understanding by analyzing how process variables and operating conditions during the course of a semi-batch reactor affect product quality.


Sign in / Sign up

Export Citation Format

Share Document