scholarly journals Directional Modulation Technique Using a Polarization Sensitive Array for Physical Layer Security Enhancement

Author(s):  
Wei Zhang ◽  
Bin Li ◽  
Mingnan Le ◽  
Jun Wang ◽  
Jinye Peng

Directional modulation (DM), as an emerging promising physical layer security (PLS) technique at the transmitter side with the help of an antenna array, has developed rapidly over decades. In this study, a DM technique using a polarization sensitive array (PSA) to produce the modulation with different polarization states (PSs) at different directions is investigated. PSA can be employed for more effective DM for an additional degree of freedom provided in the polarization domain. The polarization information can be exploited to transmit different data streams simultaneously at the same directions, same frequency, but with fixed different PSs in the desired directions to increase the channel capacity, and with random PSs off the desired directions to enhance PLS. The proposed method has the capability of concurrently projecting independent signals into different specified spatial directions while simultaneously distorting signal constellation in all other directions. Mathematical analysis and design examples for single-beam and multi-beam DM systems are presented. Simulation results demonstrate that the proposed method is more effective for PLS and the channel capacity is significantly improved compared with conventional antenna arrays.

Sensors ◽  
2019 ◽  
Vol 19 (24) ◽  
pp. 5396
Author(s):  
Wei Zhang ◽  
Bin Li ◽  
Mingnan Le ◽  
Jun Wang ◽  
Jinye Peng

Directional modulation (DM), as an emerging promising physical layer security (PLS) technique at the transmitter side with the help of an antenna array, has developed rapidly over decades. In this study, a DM technique using a polarization sensitive array (PSA) to produce the modulation with different polarization states (PSs) at different directions is investigated. A PSA, as a vector sensor, can be employed for more effective DM for an additional degree of freedom (DOF) provided in the polarization domain. The polarization information can be exploited to transmit different data streams simultaneously at the same directions, same frequency, but with different PSs in the desired directions to increase the channel capacity, and with random PSs off the desired directions to enhance PLS. The proposed method has the capability of concurrently projecting independent signals into different specified spatial directions while simultaneously distorting signal constellation in all other directions. The symbol error rate (SER), secrecy rate, and the robustness of the proposed DM scheme are analyzed. Design examples for single- and multi-beam DM systems are also presented. Simulations corroborate that (1) the proposed method is more effective for PLS; (2) the proposed DM scheme is more power-efficient than the traditional artificial noise aided DM schemes; and (3) the channel capacity is significantly improved compared with conventional scalar antenna arrays.


Author(s):  
Wei Zhang ◽  
Bin Li ◽  
Mingnan Le ◽  
Jun Wang ◽  
Jinye Peng

Directional modulation (DM), as an emerging promising physical layer security (PLS) technique at the transmitter side with the help of an antenna array, has developed rapidly over decades. In this study, a DM technique using a polarization sensitive array (PSA) to produce the modulation with different polarization states (PSs) at different directions is investigated. A PSA, as a vector sensor, can be employed for more effective DM for an additional degree of freedom (DOF) provided in the polarization domain. The polarization information can be exploited to transmit different data streams simultaneously at the same directions, same frequency, but with different PSs in the desired directions to increase the channel capacity, and with random PSs off the desired directions to enhance PLS. The proposed method has the capability of concurrently projecting independent signals into different specified spatial directions while simultaneously distorting signal constellation in all other directions. The symbol error rate (SER), secrecy rate, and the robustness of the proposed DM scheme are analyzed. Design examples for single- and multi-beam DM systems are also presented. Simulations corroborate that 1) the proposed method is more effective for PLS; 2) the proposed DM scheme is more power-efficient than the traditional artificial noise aided DM schemes; and 3) the channel capacity is significantly improved compared with conventional scalar antenna arrays.


IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 74459-74470 ◽  
Author(s):  
Feng Liu ◽  
Ling Wang ◽  
Jian Xie ◽  
Yuexian Wang ◽  
Zhaolin Zhang

2019 ◽  
Vol 13 (19) ◽  
pp. 3307-3316
Author(s):  
Feng Liu ◽  
Jian Xie ◽  
Wei Zhang ◽  
Ling Wang ◽  
Yuexian Wang

Electronics ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 776
Author(s):  
Josep Parrón ◽  
Edith Cabrera-Hernandez ◽  
Alan Tennant

Directional modulation (DM) has been proposed as a technique to enhance physical layer security of wireless transmissions. In DM, the improvement of security is achieved by increasing the transmitted power in such a way that the bit error rate (BER) is degraded in the observation angles out of the desired secure direction. The performance of DM in terms of BER is typically evaluated by transmitting a stream of symbols for every observation angle, but this approach can be time consuming. In this communication, we propose an approach to evaluate, accurately and efficiently, the BER of dynamic DM (DDM) for standard modulation schemes. Several DDM configurations will be tested to illustrate the benefits and limitations of the evaluation method. The proposed approach is also used to present a non-iterative DDM synthesis with restrictions in the BER response.


2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Edith Annette Cabrera-Hernández ◽  
Josep Parron ◽  
Alan Tennant

Dynamic directional modulation (DDM) has already proven to be an efficient technique to achieve physical layer security in wireless communications. System architectures based on vector modulators provide a flexible framework to implement synthesis methods that allow us to obtain increased security and/or independent multichannel transmissions. However, the implementation of DDM with vector modulators requires an accurate calibration (amplitude and phase) of every component in the RF path. In this contribution, we study the sensitivity of the response of a DDM system based on commercial vector modulators showing how to correct the nonideal behavior of all the components thanks to the flexibility provided by the vector modulator.


Sign in / Sign up

Export Citation Format

Share Document