scholarly journals Optimal Conditions of Membrane Filtration Process in the Treatment of Blending Water by Lab-Scale and Pilot-Scale Tests

Author(s):  
Sung-joon Kim

The aim of this study is to evaluate the optimal conditions of membrane filtration process. Both laboratory test and pilot-scale test were conducted to examine a treated water on blending water. The water sample were prepared by blending a raw water and the effluent water filtered through an organic membrane. The optimal efficiency in the treatment of water quality at the lab-scale test was generated under conditions of flux at 2.0 m3/m2∙day, the blending ratio of 4:1, and the optimal dosage of coagulant at 20 ppm. The pilot-scale test resulted in that the optimal efficiency was obtained under conditions of flux at 2.0 m3/m2∙day and the blending ratio of 6.0:1. However, the different results between lab-scale and pilot-scale tests on the optimal dosage of coagulant implied that it is difficult to achieve the stable condition of process operation at the low level of coagulant. In summary, the results indicated that, in the combination process of organic membrane and ceramic membrane, the recovery efficiency was achieved above the level of 98.4 %. Compared to 92.1 % in a single organic membrane process, the combination process is 6.3 % more efficient than the single one. This combination process of water treatment lead to stable recovery rates by the optimal input of dosage, less pollution load to water, and a stabilized filtration system.

2018 ◽  
Vol 58 (2) ◽  
pp. 828-835 ◽  
Author(s):  
Yu-sheng Zhang ◽  
Changming Li ◽  
Chao Wang ◽  
Jian Yu ◽  
Guangwen Xu ◽  
...  

2010 ◽  
Vol 55 (28) ◽  
pp. 8595-8599 ◽  
Author(s):  
Zhenyu Chen ◽  
Changsong Dai ◽  
Gang Wu ◽  
Mark Nelson ◽  
Xinguo Hu ◽  
...  

2014 ◽  
Vol 21 (5) ◽  
pp. 1771-1777 ◽  
Author(s):  
Guo-lin Zheng ◽  
De-qing Zhu ◽  
Jian Pan ◽  
Qi-hou Li ◽  
Yue-ming An ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document