Biotreatment of heavy oil wastewater by combined upflow anaerobic sludge blanket and immobilized biological aerated filter in a pilot-scale test

2013 ◽  
Vol 72 ◽  
pp. 48-53 ◽  
Author(s):  
Guo-hua Liu ◽  
Zhengfang Ye ◽  
Kun Tong ◽  
Yi-he Zhang
Author(s):  
Maria Gorethe Sousa Lima ◽  
Severino Rodrigues de Farias Neto ◽  
Antonio Gilson Barbosa de Lima ◽  
Flávio César Brito Nunes ◽  
Luciano de Andrade Gomes

This work reports a theoretical and experimental study to evaluate the fluid dynamic of an Upflow Anaerobic Sludge Blanket reactor (UASB), treating domestic wastewater in a pilot scale. Simulations were developed using the Ansys CFX 10.0. For validating the numerical results, an experimental study was conducted by monitoring the total concentration of suspended solids in the effluent and pressure along the reactor. The comparative analysis between the numerical and experimental results of the pressure and sludge concentration in the outlet of the reactor presented few differences, being considered satisfactory.


2001 ◽  
Vol 44 (4) ◽  
pp. 255-262 ◽  
Author(s):  
M. L. Lacalle ◽  
S. Villaverde ◽  
F. Fdz-Polanco ◽  
P. A. García-Encina

The paper presents the experimental results collected from seven months of operation of a combined anaerobic/aerobic system treating an industrial effluent with averaged content of organic matter and nitrogen of 10.4 g COD /L and 790 mg NKT /L, respectively. The system was formed by an upflow anaerobic sludge blanket (UASB) and an upflow biological aerated filter (UBAF) connected in series, with a recycling line of the UBAF effluent into the UASB for its denitrification. The best results were obtained when operating the two reactors, UASB and UBAF, with hydraulic retention times (HRT) of 3.3 and 1.3 days, respectively, and a recycling ratio of 6.7. Under these conditions the system removed 98% of the organic matter and ammonia and 91% of the total nitrogen entering the system. The activity of the different microorganisms was followed through activity assays consisting of measuring the consumption or production rate of any specific substrate or metabolism product. Thus when operating the system under the aforementioned conditions the reported values for the specific activity of methanogenic microorganims and denitrifiers coexisting in the UASB were 1.05 g COD/g VS d and 32.08 mg NO3−-N/g VS d, respectively. While the activity of ammonia and nitrite oxidisers within the UBAF were 47.65 and 4.36 mg O2 /g VS h, respectively.


2013 ◽  
Vol 699 ◽  
pp. 234-237
Author(s):  
Hong Fen Wang

A pilot-scale upflow anaerobic sludge blanket (UASB) reactor was used to study the sweet potato starch wastewater treatment performance and its influencing factors. Under normal temperature conditions, the operating parameters of sweet potato starch wastewater from UASB treatment was optimized, and the better conditions from different influent CODcr concentrations was obtained. The impacts from trace elements MgCl2, FeCl2, CoCl2, NiCl2 on physiological and biochemical characteristics of anaerobic granular sludge was developed.


2009 ◽  
Vol 59 (11) ◽  
pp. 2265-2272 ◽  
Author(s):  
S. Satyanarayan ◽  
A. Karambe ◽  
A. P. Vanerkar

Herbal pharmaceutical industry has grown tremendously in the last few decades. As such, literature on the treatment of this wastewater is scarce. Water pollution control problems in the developing countries need to be solved through application of cost effective aerobic/anaerobic biological systems. One such system—the upflow anaerobic sludge blanket (UASB) process which is known to be cost effective and where by-product recovery was also feasible was applied for treatment of a high strength wastewater for a period of six months in a pilot scale upflow anaerobic sludge blanket (UASB) reactor with a capacity of 27.44 m3. Studies were carried out at various organic loading rates varying between 6.26 and 10.33 kg COD/m3/day and hydraulic retention time (HRT) fluctuating between 33 and 43 hours. This resulted in chemical oxygen demand (COD), biochemical oxygen demand (BOD) and suspended solids (SS) removal in the range of 86.2%–91.6%, 90.0%–95.2% and 62.6%–68.0% respectively. The biogas production varied between 0.32–0.47 m3/kg COD added. Sludge from different heights of UASB reactor was collected and subjected to scanning electron microscopy (SEM). The results indicated good granulation with efficient UASB reactor performance.


1999 ◽  
Vol 40 (8) ◽  
pp. 237-244 ◽  
Author(s):  
A. Puñal ◽  
A. Lorenzo ◽  
E. Roca ◽  
C. Hernández ◽  
J. M. Lema

The operation of an industrial pilot scale treating wastewater from a fibreboard-processing factory was monitored by an advanced system. The plant, an anaerobic hybrid UASB-UAF bioreactor (Upflow Anaerobic Sludge Blanket-Upflow Anaerobic Filter), was equipped with the following measurement devices: biogas flow-meter, feed and recycling flow-meters, thermometer Pt-100, biogas analyser (CH4 and CO), Hydrogen analyser and pH-meter. Other parameters such as alkalinity, Chemical Oxygen Demand (COD) and Volatile Fatty Acids (VFA) were determined off-line. All the on-line sensor measurements were monitored, through a PLC (Programmable Logic Controller), which indicated about the plant failures, including the measuring devices (giving messages or alarms to the operator) and provided the set points for the PLC. The pilot plant was started-up at an initial Organic Loading Rate (OLR) of 2 kg COD/m3.d (Hydraulic Retention Time (HRT) 5 days and 10 kg COD/m3), this value increasing up to 10 kg COD/m3.d by decreasing HRT to 1 day. The behaviour of the bioreactor during start-up and steady state operation was studied. After that, an experiment was performed to analyse the response of the bioreactor to an organic overload. From the results, different variables were evaluated as useful control parameters. Monitoring of CO concentration did not permit the prediction of destabilisation of the bioreactor. However, H2 concentration is quite a sensitive variable, which must be analysed together with other parameters such as methane composition or gas flow-rate. Besides, alkalinity is easy to measure and provides immediate information about the state of the plant, as was shown through the off-line measurements.


2011 ◽  
Vol 64 (10) ◽  
pp. 1959-1966 ◽  
Author(s):  
K. Syutsubo ◽  
W. Yoochatchaval ◽  
I. Tsushima ◽  
N. Araki ◽  
K. Kubota ◽  
...  

In this study, continuous operation of a pilot-scale upflow anaerobic sludge blanket (UASB) reactor for sewage treatment was conducted for 630 days to investigate the physical and microbial characteristics of the retained sludge. The UASB reactor with a working volume of 20.2 m3 was operated at ambient temperature (16–29 °C) and seeded with digested sludge. After 180 days of operation, when the sewage temperature had dropped to 20 °C or lower, the removal efficiency of both total suspended solids (TSS) and total biochemical oxygen demand (BOD) deteriorated due to washout of retained sludge. At low temperature, the cellulose concentration of the UASB sludge increased owing to the rate limitation of the hydrolytic reaction of suspended solids in the sewage. However, after an improvement in sludge retention (settleability and concentration) in the UASB reactor, the process performance stabilized and gave sufficient results (68% of TSS removal, 75% of total BOD removal) at an hydraulic retention time (HRT) of 9.7 h. The methanogenic activity of the retained sludge significantly increased after day 246 due to the accumulation of Methanosaeta and Methanobacterium following the improvement in sludge retention in the UASB reactor. Acid-forming bacteria from phylum Bacteroidetes were detected at high frequency; thus, these bacteria may have an important role in suspended solids degradation.


Sign in / Sign up

Export Citation Format

Share Document