scholarly journals Calculation of the Isobaric Heat Capacities of the Liquid and Solid Phase of Organic Compounds at 298.15K by Means of a Generally Applicable Computer Algorithm Based on the Group-Additivity Method

Author(s):  
Rudolf Naef

The calculation of the isobaric heat capacities of the liquid and solid phase of molecules at 298.15 K is presented, applying a universal computer algorithm based on the atom-groups additivity method, using refined atom groups. The atom groups are defined as the molecules' constituting atoms and their immediate neighbourhood. In addition, the hydroxy group of alcohols are further subdivided to take account of the different intermolecular interactions of primary, secondary and tertiary alcohols. The evaluation of the groups' contributions has been carried out by means of a fast Gauss-Seidel fitting calculus using experimental data from literature. Plausibility has been tested immediately after each fitting calculation using a 10-fold cross-validation procedure. For the heat capacity of liquids, the respective goodness of fit of the direct (R2) and the cross-validation calculations (Q2) of 0.998 and 0.9975, and the respective standard deviations of 8.2 and 9.16 J/mol/K, together with a medium absolute percentage deviation (MAPD) of 2.69%, based on the experimental data of 1133 compounds, proves the excellent predictive applicability of the present method. The statistical values for the heat capacity of solids are only slightly inferior: for R2 and Q2, the respective values are 0.9915 and 0.9875, the respective standard deviations are 12.19 and 14.13 J/mol/K and the MAPD is 4.65%, based on 732 solids. The predicted heat capacities for a series of liquid and solid compounds has been directly compared to those received by a complementary method based on the "true" molecular volume [1] and their deviations elucidated.

Molecules ◽  
2020 ◽  
Vol 25 (5) ◽  
pp. 1147
Author(s):  
Rudolf Naef

The calculation of the isobaric heat capacities of the liquid and solid phase of molecules at 298.15 K is presented, applying a universal computer algorithm based on the atom-groups additivity method, using refined atom groups. The atom groups are defined as the molecules’ constituting atoms and their immediate neighbourhood. In addition, the hydroxy group of alcohols are further subdivided to take account of the different intermolecular interactions of primary, secondary, and tertiary alcohols. The evaluation of the groups’ contributions has been carried out by solving a matrix of simultaneous linear equations by means of the iterative Gauss–Seidel balancing calculus using experimental data from literature. Plausibility has been tested immediately after each fitting calculation using a 10-fold cross-validation procedure. For the heat capacity of liquids, the respective goodness of fit of the direct (r2) and the cross-validation calculations (q2) of 0.998 and 0.9975, and the respective standard deviations of 8.24 and 9.19 J/mol/K, together with a mean absolute percentage deviation (MAPD) of 2.66%, based on the experimental data of 1111 compounds, proves the excellent predictive applicability of the present method. The statistical values for the heat capacity of solids are only slightly inferior: for r2 and q2, the respective values are 0.9915 and 0.9874, the respective standard deviations are 12.21 and 14.23 J/mol/K, and the MAPD is 4.74%, based on 734 solids. The predicted heat capacities for a series of liquid and solid compounds have been directly compared to those received by a complementary method based on the "true" molecular volume and their deviations have been elucidated.


Molecules ◽  
2019 ◽  
Vol 24 (8) ◽  
pp. 1626 ◽  
Author(s):  
Rudolf Naef

A universally applicable method for the prediction of the isobaric heat capacities of the liquid and solid phase of molecules at 298.15 K is presented, derived from their “true” volume. The molecules’ “true” volume in A3 is calculated on the basis of their geometry-optimized structure and the Van-der-Waals radii of their constituting atoms by means of a fast numerical algorithm. Good linear correlations of the “true” volume of a large number of compounds encompassing all classes and sizes with their experimental liquid and solid heat capacities over a large range have been found, although noticeably distorted by intermolecular hydrogen-bond effects. To account for these effects, the total amount of 1303 compounds with known experimental liquid heat capacities has been subdivided into three subsets consisting of 1102 hydroxy-group-free compounds, 164 monoalcohols/monoacids, and 36 polyalcohols/polyacids. The standard deviations for Cp(liq,298) were 20.7 J/mol/K for the OH-free compunds, 22.91 J/mol/K for the monoalcohols/monoacids and 16.03 J/mol/K for the polyols/polyacids. Analogously, 797 compounds with known solid heat capacities have been separated into a subset of 555 OH-free compounds, 123 monoalcohols/monoacids and 119 polyols/polyacids. The standard deviations for Cp(sol,298) were calculated to 23.14 J/mol/K for the first, 21.62 J/mol/K for the second, and 19.75 J/mol/K for the last subset. A discussion of structural and intermolecular effects influencing the heat capacities as well as of some special classes, in particular hydrocarbons, ionic liquids, siloxanes and metallocenes, has been given. In addition, the present method has successfully been extended to enable the prediction of the temperature dependence of the solid and liquid heat capacities in the range between 250 and 350 K.


1988 ◽  
Vol 53 (12) ◽  
pp. 3072-3079
Author(s):  
Mojmír Skokánek ◽  
Ivo Sláma

Molar heat capacities and molar enthalpies of fusion of the solvates Zn(NO3)2 . 2·24 DMSO, Zn(NO3)2 . 8·11 DMSO, Zn(NO3)2 . 6 DMSO, NaNO3 . 2·85 DMSO, and AgNO3 . DMF, where DMSO is dimethyl sulfoxide and DMF is dimethylformamide, have been determined over the temperature range 240 to 400 K. Endothermic peaks found for the zinc nitrate solvates below the liquidus temperature have been ascribed to solid phase transformations. The molar enthalpies of the solid phase transformations are close to 5 kJ mol-1 for all zinc nitrate solvates investigated. The dependence of the molar heat capacity on the temperature outside the phase transformation region can be described by a linear equation for both the solid and liquid phases.


Author(s):  
Rudolf Naef ◽  
William E. Acree Jr.

The calculation of the standard enthalpies of vaporization, sublimation and solvation of organic molecules is presented using a common computer algorithm on the basis of a group-additivity method. The same algorithm is also shown to enable the calculation of their entropy of fusion as well as the total phase-change entropy of liquid crystals. The present method is based on the complete break-down of the molecules into their constituting atoms and their immediate neighbourhood; the respective calculations of the contribution of the atomic groups by means of the Gauss-Seidel fitting method is based on experimental data collected from literature. The feasibility of the calculations for each of the mentioned descriptors was verified by means of a 10-fold cross-validation procedure proving the good to high quality of the predicted values for the three mentioned enthalpies and for the entropy of fusion, whereas the predictive quality for the total phase-change entropy of liquid crystals was poor. The goodness of fit (Q2) and the standard deviation (σ) of the cross-validation calculations for the five descriptors was as follows: 0.9641 and 4.56 kJ/mol (N=3386 test molecules) for the enthalpy of vaporization, 0.8657 and 11.39 kJ/mol (N=1791) for the enthalpy of sublimation, 0.9546 and 4.34 kJ/mol (N=373) for the enthalpy of solvation, 0.8727 and 17.93 J/mol/K (N=2637) for the entropy of fusion and 0.5804 and 32.79 J/mol/K (N=2643) for the total phase-change entropy of liquid crystals. The large discrepancy between the results of the two closely related entropies is discussed in detail. Molecules, for which both the standard enthalpies of vaporization and sublimation were calculable, enabled the estimation of their standard enthalpy of fusion by simple subtraction of the former from the latter enthalpy. For 990 of them the experimental enthalpy-of-fusion values are also known, allowing their comparison with predictions, yielding a correlation coefficient R2 of 0.6066.


2021 ◽  
Vol 2090 (1) ◽  
pp. 012081
Author(s):  
J. C. G. Tedesco ◽  
V.J. Monteiro ◽  
A. M. G. Carvalho ◽  
L.P. Cardoso ◽  
A. A. Coelho

Abstract Simulations of the magnetic heat capacity of some (Pr, Tb)Al2 compounds were performed using the mean-field approach. The developed routine aims to optimize the set of mean-field parameters. The proposed algorithm calculates the sum of squared differences between the experimental points and the simulated curve and then changes the parameters in order to minimize this sum. This searching leads to consistent values that can reproduce the experimental data. The parameters found in this work reproduced the heat capacities curves of the PrxTb(1−x)Al2 compounds, x=0.25, x=0.50 and x=0.75, with good agreement. The physical limitations of the mean-field approach do not preclude analysing the results. These parameters are important because they can help to understand and calculate the magnetocaloric effect these materials can present.


2003 ◽  
Vol 68 (6) ◽  
pp. 479-495 ◽  
Author(s):  
Jovan Jovanovic ◽  
Dusan Grozdanic

In this paper a review of selected literature experimental data for saturated-liquid heat capacities was presented. Two-, three- and four-parameter polynomial correlation models are tested on those data. Obtained results lead to the conclusion that correlation quality depends on the number of parameters, and slightly on the type of models. The best two three- and four-parameter models were proposed.


2020 ◽  
Vol 22 (1) ◽  
pp. 27
Author(s):  
B.K. Kassenov ◽  
Sh.B. Kassenova ◽  
Zh.I. Sagintaeva ◽  
E.E. Kuanyshbekov ◽  
M.O. Turtubaeva

The isobaric heat capacities of novel nano-sized cobalt-cuprate-manganite of lanthanum and barium LaBaCoCuMnO6 and nickel-cuprate-manganite of lanthanum and barium LaBaNiCuMnO6 were investigated by dynamic calorimetry over the temperature range of 298.15‒673 K. It is found that a λ-shaped effect is observed on the curve of the heat capacity dependence on temperature of LaBaCoCuMnO6 at 523 K, while LaBaNiCuMnO6 also has a similar effect at 473 K. Equations for the temperature dependence of the heat capacity of cobalt(nickelite)-cuprate-manganite of lanthanum and barium are derived with allowance for the temperatures of phase transitions. Based on the experimental data, the fundamental constants ‒ the standard heat capacities of the compounds under study were found. Irrespective of the experimental data, we also calculated the standard heat capacities of the mentioned compounds using the Debye theory using the characteristic temperatures of the elements, their melting points, the Koref and Nernst-Lindemann equations. The obtained calculated data on C0p (298.15) of the compounds were in satisfactory agreement with the experimental data on the standard heat capacity. The standard entropies of LaBaCoCuMnO6 and LaBaNiCuMnO6 were calculated by the ion increment method. We calculated the temperature dependences of the enthalpy Ho(T)- Ho(298.15), entropy ΔSo(T), and the reduced thermodynamic potential ΔФ**(Т).


1999 ◽  
Vol 54 (6-7) ◽  
pp. 397-403 ◽  
Author(s):  
L. Rycerz ◽  
M. Gaune-Escard

Abstract The heat capacities of the solid and liquid Rb3LnCl6 compounds, where Ln = La, Ce, Pr, Nd, have been determined by differential scanning calorimetry (DSC) in the temperature range 300 -1100 K. The heat capacity shows a small decrease with increasing temperature from the temperature of phase transition up to 150 -200 K above this transition for the Rb3CeCl6, Rb3PrCl6 and Rb3NdCl6 compounds. The measured heat capacities were used to calculate the formation enthalpy of the liquid phase. The results obtained compare satisfactorily with the known experimental data.


1999 ◽  
Vol 54 (3-4) ◽  
pp. 229-235 ◽  
Author(s):  
M. Gaune-Escard ◽  
L. Rycerz

The heat capacities of the solid and liquid K3LnCl6 compounds (Ln = La, Ce, Pr, Nd) have been determined by differential scanning calorimetry (DSC) in the temperature range 300 -1100 K. Their temperature dependence is discussed in terms of the phase transitions of these compounds as reported in literature. The heat capacity increases and decreases strongly in the vicinity of a phase transition but else varies smoothly. The Cp data were fitted by an equation which provides a satisfactory representation up to the temperatures of Cp discontinuity. The measured heat capacities were checked for consistency by calculating the enthalpy of formation of the liquid phase, which had been previously measured. The results obtained compare satisfactorily with these experimental data.


Author(s):  
Rudolf Naef ◽  
William E. Acree

The application of a commonly used computer algorithm based on the group-additivity method for the calculation of the liquid viscosity coefficient at 292.15K and the activity coefficient at infinite dilution in water at 298.15K of organic molecules is presented. The method is based on the complete breakdown of the molecules into their constituting atoms, further subdividing them by their immediate neighbourhood. A fast Gauss-Seidel fitting method using experimental data from literature is applied for the calculation of the atom groups’ contributions. Plausibility tests have been carried out on each of the calculations using a 10-fold cross-validation procedure which confirms the excellent predictive quality of the method. The goodness of fit (Q2) and the standard deviation (σ) of the cross-validation calculations for the viscosity coefficient, expressed as log(η), was 0.9728 and 0.11, respectively, for 413 test molecules, and for the activity coefficient log(γ)∞ the corresponding values were 0.9736 and 0.31, respectively, for 621 test compounds. The present approach has proven its versatility in that it enabled at once the evaluation of the liquid viscosity of normal organic compounds as well as of ionic liquids.


Sign in / Sign up

Export Citation Format

Share Document