scholarly journals Principle of Self-adaptive Emergence of Wave-particle Duality, Solution to Crisis of a Particle’s Simultaneously Passing Double Slits and Objective Criteria Distinguishing Classical and Quantum Particles

Author(s):  
C. Huang ◽  
Yong-Chang Huang ◽  
Yi-You Nie

This paper uncovers that quantum uncertain principle makes the single particle with global property have no certain path, and then wave of quantum particle can simultaneously do pass the double slits. The two subwaves after passing Young’s double slits are entanglement, they may form interference of subwaves. Consequently, we find a kind of quantum probabilistic entanglements with Wheeler's delayed choice. Quantum particles such as photons, electrons, neutrons, protons etc mean that wave of the quantum particle can simultaneously do pass through Young's double slits, rather than individual quantum particle may pass through Young's double slits at the same time. When considering wave property, we cannot consider particle property (Just as in the photoelectric effect, considering the particle nature of the system, people cannot consider wave property, otherwise the photoelectric effect cannot appear). Therefore, this paper discovers that the ability of single photon to hit electrons out in photoelectric effect is complementarily equivalent to the ability of wave of the single photon to simultaneously pass through Young's double slits in wave-particle duality. Objective criteria for distinguishing classical and quantum particles are discovered and objectively give the applicable realm of quantum mechanics for the first time. The crisis of the single particle’s simultaneously passing through Young's double slits, which has been plaguing physicists in the whole world up to now for decades, is solved, in which the studies are classified as classical and quantum particles, the classical particle and quantum particle wave cannot and can pass the Young’s slits, respectively. This paper discovers both the new physics mechanism of passing the double slits of the wave with the amplitude of 4-dimensional momentum representation wave function reflecting particle nature and the principle of self-adaptive emergence of wave-particle duality, and then using the principle, this paper gives both direct explanations to the current experiments and new predictions of new some experiments for wave-particle duality. All the deduced results here are consistent with all relevant physics experiments.

Author(s):  
Yong-Chang Huang ◽  
C. Huang ◽  
Yi-You Nie

This paper uncovers that quantum uncertain principle makes the single particle with global property have no certain path, and then wave of quantum particle can simultaneously do pass the double slits. The two subwaves after passing Young’s double slits are entanglement, they may form interference of subwaves. Consequently, we find a kind of quantum probabilistic entanglements with Wheeler's delayed choice. Quantum particles such as photons, electrons, neutrons, protons etc mean that wave of the quantum particle can do pass through Young's double slits at the same time, rather than individual quantum particle may pass through Young's double slits at the same time. When considering wave property, we cannot consider particle property (Just as in the photoelectric effect, considering the particle nature of the system, people cannot consider wave property, otherwise the photoelectric effect cannot appear). Therefore, this paper novelly discovers that the ability of single photon to hit electrons out in photoelectric effect is complementarily equivalent to the ability of wave of the single photon to simultaneously pass through Young's double slits in wave-particle duality. Objective criteria for distinguishing classical and quantum particles are discovered. The crisis of the single particle’s simultaneously passing through Young's double slits, which has been plaguing physicists in the whole world up to now for decades, is solved, in which the studies are classified as classical and quantum particles, the classical particle and quantum particle wave cannot and can pass the Young’s slits, respectively. This paper discovers both the new physics mechanism of passing the double slits of the plane wave with the amplitude of 4-dimensional momentum representation wave function reflecting particle nature and the principle of self-adaptive emergence of wave-particle duality, which are key in quantum physics. All the deduced results here are consistent with all relevant physics experiments.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Xiaojiong Chen ◽  
Yaohao Deng ◽  
Shuheng Liu ◽  
Tanumoy Pramanik ◽  
Jun Mao ◽  
...  

AbstractBohr’s complementarity is one central tenet of quantum physics. The paradoxical wave-particle duality of quantum matters and photons has been tested in Young’s double-slit (double-path) interferometers. The object exclusively exhibits wave and particle nature, depending measurement apparatus that can be delayed chosen to rule out too-naive interpretations of quantum complementarity. All experiments to date have been implemented in the double-path framework, while it is of fundamental interest to study complementarity in multipath interferometric systems. Here, we demonstrate generalized multipath wave-particle duality in a quantum delayed-choice experiment, implemented by large-scale silicon-integrated multipath interferometers. Single-photon displays sophisticated transitions between wave and particle characters, determined by the choice of quantum-controlled generalized Hadamard operations. We characterise particle-nature by multimode which-path information and wave-nature by multipath coherence of interference, and demonstrate the generalisation of Bohr’s multipath duality relation. Our work provides deep insights into multidimensional quantum physics and benchmarks controllability of integrated photonic quantum technology.


Author(s):  
Sauro Succi

Chapter 32 expounded the basic theory of quantum LB for the case of relativistic and non-relativistic wavefunctions, namely single-particle quantum mechanics. This chapter goes on to cover extensions of the quantum LB formalism to the overly challenging arena of quantum many-body problems and quantum field theory, along with an appraisal of prospective quantum computing implementations. Solving the single particle Schrodinger, or Dirac, equation in three dimensions is a computationally demanding task. This task, however, pales in front of the ordeal of solving the Schrodinger equation for the quantum many-body problem, namely a collection of many quantum particles, typically nuclei and electrons in a given atom or molecule.


Entropy ◽  
2021 ◽  
Vol 23 (4) ◽  
pp. 408
Author(s):  
Matteo Villani ◽  
Guillermo Albareda ◽  
Carlos Destefani ◽  
Xavier Cartoixà ◽  
Xavier Oriols

Without access to the full quantum state, modeling quantum transport in mesoscopic systems requires dealing with a limited number of degrees of freedom. In this work, we analyze the possibility of modeling the perturbation induced by non-simulated degrees of freedom on the simulated ones as a transition between single-particle pure states. First, we show that Bohmian conditional wave functions (BCWFs) allow for a rigorous discussion of the dynamics of electrons inside open quantum systems in terms of single-particle time-dependent pure states, either under Markovian or non-Markovian conditions. Second, we discuss the practical application of the method for modeling light–matter interaction phenomena in a resonant tunneling device, where a single photon interacts with a single electron. Third, we emphasize the importance of interpreting such a scattering mechanism as a transition between initial and final single-particle BCWF with well-defined central energies (rather than with well-defined central momenta).


1979 ◽  
Vol 84 (2) ◽  
pp. 178-181 ◽  
Author(s):  
B. Haas ◽  
H.R. Andrews ◽  
O. Häusser ◽  
D. Horn ◽  
J.F. Sharpey-Schafer ◽  
...  

2018 ◽  
Vol 232 (9-11) ◽  
pp. 1593-1606 ◽  
Author(s):  
Max J. Schnepf ◽  
Yannic Brasse ◽  
Fabian R. Goßler ◽  
Anja Maria Steiner ◽  
Julian Obermeier ◽  
...  

Abstract We present a fluorescent emitter (rhodamine B) coupled to a dielectric or metallic interface as well as a metallic cavity to study their radiative decay processes. Supported by finite-difference time-domain (FDTD) simulations, we correlate the non-radiative and radiative decay rates with the absorption and scattering cross section efficiencies, respectively. On a single particle level, we use atomic force microscopy (AFM), scanning electron microscopy (SEM), scattering spectroscopy, fluorescence life time imaging (FLIM) and time-correlated single photon counting (TCSPC) to evaluate the enhanced fluorescence decay at the same location. With this study, we show a colloidal gain material, which can be integrated into lattices using existing directed self-assembled methods to study their coherent energy transfer.


2020 ◽  
Vol 34 (18) ◽  
pp. 2030002
Author(s):  
Donald C. Chang

We know energy and mass of a particle can be connected by [Formula: see text]. What is the physical basis of this relation? Historically, it was thought to be based on the principle of relativity (PR). A careful examination of the literature, however, indicated that this understanding is not true. Einstein did not derive this relation from PR. Instead, his argument was mainly based on thought experiments, which focused on the similarity between radiation and matter. Following this hint, we suspect that the mass–energy equivalence could be based on the quantum property of wave–particle duality. We know photon and electron can behave as a particle as well as a wave. Such a wave property could make the particle behave differently from Newtonian mechanics. Indeed, using a wave model which treats particles as excitations of the vacuum, we show that the mass–energy equivalence relation can be directly derived based on the quantum relations of Planck and de Broglie. This wave hypothesis has several advantages; not only can it explain naturally why particles can be created in the vacuum; it also predicts that a particle cannot travel faster than the speed of light. This hypothesis can also be tested in experiment.


2020 ◽  
Vol 18 (06) ◽  
pp. 2050033
Author(s):  
Muhammad Mubashir Khan ◽  
Asad Arfeen ◽  
Usama Ahsan ◽  
Saneeha Ahmed ◽  
Tahreem Mumtaz

Quantum key distribution (QKD) is a proven secured way to transmit shared secret keys using quantum particles. Any adversarial attempt to intercept and eavesdrop secret key results in generating errors alerting the legitimate users. Since QKD is constrained by quantum mechanics principles, the practical transmission of the key at a greater distance is an issue. In this paper, we discover and analyze the key factors associated with transmission media, hardware components and protocol implementation of the QKD system that causes hindrance in distance range. Practical implementation of BB84 and KMB09 protocols is discussed to determine the achievable distance given current technology. We find that by using ultra low loss fiber, short-pulse laser and superconducting nanowire single photon detector the maximum achievable distance for both of the quantum protocols is 250[Formula: see text]km.


2019 ◽  
Vol 18 (08) ◽  
pp. 1950039
Author(s):  
Gloria Bazargan ◽  
Evan Curtin ◽  
Karl Sohlberg

The movement of quantum particles between distinct spatial regions is an essential feature of nanoscale devices. Consequently, theoretical methods for characterizing the transit time associated with this movement may aid in identifying and refining nanoscale systems with desirable transport properties. Herein, we explore the utility and range of validity of a recently reported probabilistic method for quantifying the timescale of quantum particle transit. The method is applied to intramolecular proton transfer in dicarbonyl compounds, and electron transfer in donor-bridge-acceptor molecules. Direct comparison is made between statistical predictions of proton and electron transfer times and corresponding transfer times deduced from the previously reported experimental observables. Insights provided by the method into the path of flow of probability density are discussed.


Sign in / Sign up

Export Citation Format

Share Document