scholarly journals A Review for Southern Highbush Blueberry Alternative Production Systems

Author(s):  
Yang Fang ◽  
Gerardo H. Nunez ◽  
Mariana Neves da Silva ◽  
Douglas A. Phillips ◽  
Patricio R. Munoz

Southern highbush blueberry plantations have been expanded into worldwide non-traditional growing areas with elite cultivars and improved horticultural practices. This article presents a comprehensive review of current production systems – alternatives to traditional open field production – such as production in protected environments, high-density plantings, evergreen production, and container-based production. We discuss the advantages and disadvantages of each system and compare their differences to the open field production. In addition, potential solutions have been provided for some of the disadvantages. We also highlight some of the gaps existing between academic studies and production in industry, providing a guide for future academic research. All these alternative systems have shown the potential to produce high yields with high quality berries. Alternative systems, compared to the field production, require higher establishment investments and thus create an entry barrier for new producers. Nevertheless, with their advantages, alternative productions have potential to be profitable.

Agronomy ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 1531
Author(s):  
Yang Fang ◽  
Gerardo H. Nunez ◽  
Mariana Neves da Silva ◽  
Douglas A. Phillips ◽  
Patricio R. Munoz

Southern highbush blueberry cultivation has expanded into non-traditional growing areas worldwide due to elite cultivars and improved horticultural practices. This article presents a comprehensive review of current production systems—alternatives to traditional open field production—such as production in protected environments, high-density plantings, evergreen production, and container-based production. We discuss the advantages and disadvantages of each system and compare their differences to open field production. In addition, we provide potential solutions for some of the disadvantages. We also highlight some of the gaps existing between academic studies and production in industry, providing a guide for future academic research. All these alternative systems have shown the potential to produce high yields with high-quality berries. Alternative systems, compared to field production, require higher establishment investments and thus create an entry barrier for new producers. Nevertheless, with their advantages, alternative productions have the potential to be profitable.


2012 ◽  
Vol 22 (5) ◽  
pp. 659-668 ◽  
Author(s):  
Russell W. Wallace ◽  
Annette L. Wszelaki ◽  
Carol A. Miles ◽  
Jeremy S. Cowan ◽  
Jeffrey Martin ◽  
...  

Field studies were conducted during 2010 and 2011 in Knoxville, TN; Lubbock, TX; and Mount Vernon, WA; to compare high tunnel and open-field organic production systems for season extension and adverse climate protection on lettuce (Lactuca sativa) yield and quality. The climates of these locations are diverse and can be typified as hot and humid (Knoxville), hot and dry (Lubbock), and cool and humid (Mount Vernon). In both years, 6-week-old lettuce seedlings of ‘New Red Fire’ and ‘Green Star’ (leafy type), ‘Adriana’ and ‘Ermosa’ (butterhead type), and ‘Coastal Star’ and ‘Jericho’ (romaine type) were transplanted in the late winter or early spring into subplots covered with black plastic and grown to maturity (43 to 65 days). Lettuce harvest in Knoxville occurred at 50 to 62 days after transplanting (DAT), with open-field lettuce harvested an average of 9 days earlier compared with high tunnel plots both years (P > 0.0001). The earlier than anticipated harvests in the open-field in Knoxville in 2010 were due to lettuce bolting. In Lubbock, high tunnel lettuce was harvested an average 16 days earlier in 2010 compared with open-field lettuce (P > 0.0001), while in 2011, high temperatures and bolting required that open-field lettuce be harvested 4 days earlier than lettuce grown in high tunnels. On average, lettuce cultivars at Mount Vernon matured and were harvested 56 to 61 DAT in 2010 and 54 to 64 DAT in 2011 with no significant differences between high tunnel and open-field production systems. Total and marketable yields at Mount Vernon and Lubbock averaged across cultivars were comparable in both high tunnel and open-field plots. At Knoxville, although total yields were significantly higher (P > 0.0062) in high tunnels than open-field plots, incidence of insect, disease, and physiological damage in high tunnel plots reduced lettuce quality and marketable yield (P > 0.0002). Lettuce head length:diameter ratio (LDR) averaged across cultivars was equal between high tunnel and the open field at all three locations. High tunnel production systems offer greater control of environments suitable for lettuce production, especially in climates like Knoxville and Lubbock where later-planted open-field systems may be more susceptible to temperature swings that may affect lettuce quality. These results suggest that although high tunnel culture alone may influence lettuce yield and quality, regional climates likely play a critical role in determining the impact of these two production systems on marketable lettuce yields.


Insects ◽  
2019 ◽  
Vol 10 (10) ◽  
pp. 313 ◽  
Author(s):  
Dasia S. Harmon ◽  
Muhammad Haseeb ◽  
Lambert H. B. Kanga ◽  
Oscar E. Liburd

Drosophila suzukii (Diptera: Drosophilidae) is an invasive insect pest that was detected in Florida in August 2009 in Hillsborough County. Very limited information is available for berry growers to properly detect and monitor this serious pest in southern highbush blueberry (hybrids of Vaccinium corymbosum L. × V. darrowi Camp), rabbiteye blueberry (Vaccinium virgatum L.), and blackberry (Rubus fruticosus L.) production systems. We compared several D. suzukii traps and lures/baits at two sites in Florida. The traps evaluated included Trécé, Scentry, and a standard homemade cup trap. These traps were compared with various baits and lures, including Trécé lure, Scentry lure, yeast bait, and Suzukii trap, under Florida production systems. Early detection is important to develop an effective monitoring system so management action can be taken before economic damage occurs. Data were recorded as overall trends, as well as in 4–5 trapping periods from early to late season. Overall, the Scentry trap baited with Scentry lure, the Trécé trap baited with Trécé lure + yeast, and the Trécé trap baited with Scentry lure were the best performing traps. Yeast-based traps were also attractive to D. suzukii early in the season, but they did not provide consistent captures as the season progressed. The Scentry trap with yeast bait, the Scentry trap with Scentry lure, the Trécé trap with Trécé lure + yeast bait, and a cup trap with yeast bait caught most of the flies during the first trapping period in 2015 and 2016 in the rabbiteye blueberry. In the southern highbush blueberry, the population of D. suzukii was much lower than in the rabbiteye blueberry planting, and the Scentry trap with Scentry lure captured the highest number of flies during the first trapping period in 2016. In the blackberry, the Scentry trap with Scentry lure numerically had the highest captures during the first trapping period, but this was not significantly different from the cup trap with yeast bait, the Trécé trap baited with Suzukii trap, and the Trécé trap with Trécé lure. Overall, the Scentry trap with Scentry lure was the most consistent trap that captured D. suzukii flies throughout the season in the three production systems—rabbiteye blueberry, southern highbush blueberry, and blackberry. Growers in low pressure systems that are similar to Florida can use the Scentry trap with Scentry lure to monitor D. suzukii populations.


EDIS ◽  
2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Doug Phillips ◽  
Jeffrey G. Williamson

Research and field experience have demonstrated that fertilization is necessary to achieve proper growth and high yields in cultivated production of blueberries. This new 7-page publication of the UF/IFAS Horticultural Sciences Department provides guidance and management suggestions to Florida growers of southern highbush blueberry (SHB) for monitoring, supplying, and maintaining proper plant nutrition in commercial production operations. Written by Doug Phillips and Jeffrey G. Williamson. https://edis.ifas.ufl.edu/hs1356


2001 ◽  
Vol 126 (4) ◽  
pp. 386-393 ◽  
Author(s):  
P.A.W. Swain ◽  
R.L. Darnell

Two cultivars of southern highbush blueberry (Vaccinium corymbosum L. interspecific hybrid), `Sharpblue' and `Wannabe', were container-grown outside in either a dormant or nondormant production system to determine how the two production systems affected carbohydrate (CH2O) status, growth, and development. Plants were maintained in the nondormant condition by continuous N fertilization throughout winter (average maximum/minimum temperatures of 17/5 °C). Plants in the nondormant system retained their foliage longer into the winter compared with plants in the dormant system. Flower bud number, density, fruit number, and total fruit fresh weight (FW) per plant were greater in the nondormant compared with the dormant system plants for both cultivars. Mean fruit FW was greater in dormant compared with nondormant `Wannabe' plants, while in `Sharpblue', mean fruit FW was similar in both systems. Cane and root CH2O concentrations in nondormant system plants were generally similar to or lower than those measured in dormant system plants. Assuming that longer leaf retention in nondormant system plants increased CH2O synthesis compared with dormant system plants, the patterns of reproductive/vegetative development and root/shoot CH2O concentrations indicate that the increased CH2O in nondormant system plants was allocated to increased reproductive growth in lieu of CH2O reserve accumulation. It is probable that this increased CH2O availability, combined with longer perception of short days due to longer leaf retention, were major factors in increasing flower bud initiation and yield in the nondormant compared with the dormant system plants.


2012 ◽  
Vol 22 (5) ◽  
pp. 700-704 ◽  
Author(s):  
Bielinski M. Santos ◽  
Teresa P. Salame-Donoso

A study was conducted over two southern highbush blueberry (Vaccinium corymbosum × Vaccinium darrowi) seasons in a grower field in Florida. The objective was to compare the early fruit weight of southern highbush blueberry cultivars in high tunnels and in open fields. Four treatments were tested using combinations of two southern highbush blueberry cultivars (Snow Chaser and Springhigh) and two production systems (open fields and 18-ft-high tunnels). The results indicated that there was a significant effect of the production systems on the number of days with air temperatures at or near freezing (≤34 °F), and maximum and minimum air temperatures. The minimum air temperature in open-field plots reached ≈19 and 21 °F (61 freezing or near-freezing events) in the 2009–10 and 2010–11 seasons, respectively, whereas the minimum air temperatures inside the high tunnels were ≈32 and 33 °F, respectively, during the same seasons (only 3 days at ≤34 °F). This indicated that using high tunnels was an effective means to avoid freezing air temperatures in blueberries. In the first season, the cumulative early fruit weight was the highest in plots planted with ‘Snow Chaser’ inside the high tunnels (≈10 tons/acre), while the combined production of the two cultivars in the open fields did not reach 1 ton/acre until the end of the early harvests. The following year, there were no differences in the cumulative early fruit weight of both cultivars when planted in the open fields (2.2 tons/acre) and the cumulative fruit yields of ‘Springhigh’ and ‘Snow Chaser’ growing inside the high tunnels was twice and four times higher, respectively, than the early fruit production obtained in the open fields. These data showed the profound effect of high tunnels on flower protection and fruit set. High tunnels reduced water use for freeze protection. The total volume used in the open fields during the freezing or near-freezing days was ≈2.5 acre-inch/acre per 8 hours of freeze protection, whereas only 1/10 of that volume was applied inside the structures.


2013 ◽  
Vol 23 (4) ◽  
pp. 453-461 ◽  
Author(s):  
Suzette P. Galinato ◽  
Carol A. Miles

Lettuce (Lactuca sativa) and tomato (Solanum lycopersicum) are popular fresh market vegetable crops. In western Washington, there is interest in growing them in high tunnel production systems because of the region’s mild, coastal climate. The objectives of this study were to contrast the economic potential of growing lettuce and tomato under high tunnel and open-field production systems, and identify the main factors affecting profitability within each production system. Economic data for this study were collected by interviewing experienced lettuce and tomato growers in western Washington during focus group sessions. Costs of production varied by crop and production system, and findings indicated that it was five times more costly to grow lettuce and eight times more costly to grow tomato in a high tunnel than in the open field in western Washington. For lettuce, the labor cost per square foot of growing area was found to be 6 times greater in a high tunnel than in the open field; and for tomato, labor costs were 10 times greater in a high tunnel than in the open field. Total labor cost comprised more than 50% of the total production costs of lettuce and tomato in both the high tunnel and open-field systems. The percentage of total labor cost was similar in both the high tunnel and open-field production for lettuce, but was higher in high tunnel tomato production than in the open field. Tunnel-grown lettuce and tomato had three and four times greater marketable yield compared with field-grown, respectively. Given the base crop yield and average price, it was 43% more profitable to grow lettuce in the open field than in the high tunnel, while in contrast, high tunnel-grown tomato was three times more profitable than open-field tomato production.


EDIS ◽  
2019 ◽  
Vol 2019 (3) ◽  
Author(s):  
Douglas A. Phillips ◽  
Norma C. Flor ◽  
Philip F. Harmon

Southern highbush blueberry (SHB) cultivars are commercially grown throughout much of Florida, in both deciduous and evergreen production systems. In both systems, leaves can be damaged by many factors including environmental conditions, chemical applications, insects, and diseases. This new 12-page publication of the UF/IFAS Plant Pathology Department includes basic information to assist growers in determining 1) the likely cause (fungal, viral, algal, or bacterial) of leaf symptoms, 2) when specific leaf spots are likely to occur, 3) characteristic symptoms of common leaf problems, and 4) some of the management options that are available. Written by Douglas A. Phillips, Norma C. Flor, and Philip F. Harmon. http://edis.ifas.ufl.edu/pp348


HortScience ◽  
2008 ◽  
Vol 43 (5) ◽  
pp. 1606-1607 ◽  
Author(s):  
Paul M. Lyrene

‘Emerald’ is a low-chill tetraploid southern highbush blueberry hybrid that is well adapted to northeast and central Florida and to other areas receiving similar winter chilling (100 to 400 h below 7 °C). Emerald produces a vigorous bush with stout, semierect canes. It has medium to good survival in the field in north Florida. In northeast Florida, ‘Emerald’ flowers from mid-January to mid-February and ripens from mid-April to mid-May. ‘Emerald’ is capable of producing high yields of berries that are large, firm, and medium-dark in color with a small, dry picking scar and good flavor.


Sign in / Sign up

Export Citation Format

Share Document