scholarly journals A general framework of particle swarm optimization

Author(s):  
Loc Nguyen

Particle swarm optimization (PSO) is an effective algorithm to solve the optimization problem in case that derivative of target function is inexistent or difficult to be determined. Because PSO has many parameters and variants, I propose a general framework of PSO called GPSO which aggregates important parameters and generalizes important variants so that researchers can customize PSO easily. Moreover, two main properties of PSO are exploration and exploitation. The exploration property aims to avoid premature converging so as to reach global optimal solution whereas the exploitation property aims to motivate PSO to converge as fast as possible. These two aspects are equally important. Therefore, GPSO also aims to balance the exploration and the exploitation. It is expected that GPSO supports users to tune parameters for not only solving premature problem but also fast convergence.

PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0260231
Author(s):  
Yufeng Meng ◽  
Jianhua He ◽  
Shichu Luo ◽  
Siqi Tao ◽  
Jiancheng Xu

Focusing on the problem incurred during particle swarm optimization (PSO) that tends to fall into local optimization when solving Nash equilibrium solutions of games, as well as the problem of slow convergence when solving higher order game pay off matrices, this paper proposes an improved Predator-Prey particle swarm optimization (IPP-PSO) algorithm based on a Predator-Prey particle swarm optimization (PP-PSO) algorithm. First, the convergence of the algorithm is advanced by improving the distribution of the initial predator and prey. By improving the inertia weight of both predator and prey, the problem of “precocity” of the algorithm is improved. By improving the formula used to represent particle velocity, the problems of local optimizations and slowed convergence rates are solved. By increasing pathfinder weight, the diversity of the population is increased, and the global search ability of the algorithm is improved. Then, by solving the Nash equilibrium solution of both a zero-sum game and a non-zero-sum game, the convergence speed and global optimal performance of the original PSO, the PP-PSO and the IPP-PSO are compared. Simulation results demonstrated that the improved Predator-Prey algorithm is convergent and effective. The convergence speed of the IPP-PSO is significantly higher than that of the other two algorithms. In the simulation, the PSO does not converge to the global optimal solution, and PP-PSO approximately converges to the global optimal solution after about 40 iterations, while IPP-PSO approximately converges to the global optimal solution after about 20 iterations. Furthermore, the IPP-PSO is superior to the other two algorithms in terms of global optimization and accuracy.


Author(s):  
Kummari Rajesh ◽  
N. Visali

In this paper hybrid method, Modified Nondominated Sorted Genetic Algorithm (MNSGA-II) and Modified Population Variant Differential Evolution(MPVDE) have been placed in effect in achieving the best optimal solution of Multiobjective economic emission load dispatch optimization problem. In this technique latter, one is used to enforce the assigned percent of the population and the remaining with the former one. To overcome the premature convergence in an optimization problem diversity preserving operator is employed, from the tradeoff curve the best optimal solution is predicted using fuzzy set theory. This methodology validated on IEEE 30 bus test system with six generators, IEEE 118 bus test system with fourteen generators and with a forty generators test system. The solutions are dissimilitude with the existing metaheuristic methods like Strength Pareto Evolutionary Algorithm-II, Multiobjective differential evolution, Multi-objective Particle Swarm optimization, Fuzzy clustering particle swarm optimization, Nondominated sorting genetic algorithm-II.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Mu Lin ◽  
Zhao-Huanyu Zhang ◽  
Hongyu Zhou ◽  
Yongtao Shui

This paper researches the ascent trajectory optimization problem in view of multiple constraints that effect on the launch vehicle. First, a series of common constraints that effect on the ascent trajectory are formulated for the trajectory optimization problem. Then, in order to reduce the computational burden on the optimal solution, the restrictions on the angular momentum and the eccentricity of the target orbit are converted into constraints on the terminal altitude, velocity, and flight path angle. In this way, the requirement on accurate orbit insertion can be easily realized by solving a three-parameter optimization problem. Next, an improved particle swarm optimization algorithm is developed based on the Gaussian perturbation method to generate the optimal trajectory. Finally, the algorithm is verified by numerical simulation.


2021 ◽  
Vol 12 (4) ◽  
pp. 146-168
Author(s):  
Shiqi Wang ◽  
Zepeng Shen ◽  
Yao Peng

This paper proposes an algorithm named hybrid multi-population and adaptive search range strategy with particle swarm optimization (ARPSO) for solving multimodal optimization problems. The main idea of the algorithm is to divide the global search space into multiple sub-populations searching in parallel and independently. For diversity increasing, each sub-population will continuously change the search area adaptively according to whether there are local optimal solutions in its search space and the position of the global optimal solution, and in each iteration, the optimal solution in this area will be reserved. For the purpose of accelerating convergence, at the global and local levels, when the global optimal solution or local optimal solution is found, the global search space and local search space will shrink toward the optimal solution. Experiments show that ARPSO has unique advantages for solving multi-dimensional problems, especially problems with only one global optimal solution but multiple local optimal solutions.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Xu-Tao Zhang ◽  
Biao Xu ◽  
Wei Zhang ◽  
Jun Zhang ◽  
Xin-fang Ji

Various black-box optimization problems in real world can be classified as multimodal optimization problems. Neighborhood information plays an important role in improving the performance of an evolutionary algorithm when dealing with such problems. In view of this, we propose a particle swarm optimization algorithm based on dynamic neighborhood to solve the multimodal optimization problem. In this paper, a dynamic ε-neighborhood selection mechanism is first defined to balance the exploration and exploitation of the algorithm. Then, based on the information provided by the neighborhoods, four different particle position updating strategies are designed to further support the algorithm’s exploration and exploitation of the search space. Finally, the proposed algorithm is compared with 7 state-of-the-art multimodal algorithms on 8 benchmark instances. The experimental results reveal that the proposed algorithm is superior to the compared ones and is an effective method to tackle multimodal optimization problems.


2018 ◽  
Vol 6 (4) ◽  
pp. 281-290
Author(s):  
K. Lenin

This paper present’s Dimensioned Particle Swarm Optimization (DPSO) algorithm for solving Reactive power optimization (RPO) problem.  Dimensioned extension is introduced to particles in the particle swarm optimization (PSO) model in order to overcome premature convergence in interactive optimization. In the performance of basic PSO often flattens out with a loss of diversity in the search space as resulting in local optimal solution.  Proposed algorithm has been tested in standard IEEE 57 test bus system and compared to other standard algorithms. Simulation results reveal about the best performance of the proposed algorithm in reducing the real power loss and voltage profiles are within the limits.


Electronics ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 597
Author(s):  
Kun Miao ◽  
Qian Feng ◽  
Wei Kuang

The particle swarm optimization algorithm (PSO) is a widely used swarm-based natural inspired optimization algorithm. However, it suffers search stagnation from being trapped into a sub-optimal solution in an optimization problem. This paper proposes a novel hybrid algorithm (SDPSO) to improve its performance on local searches. The algorithm merges two strategies, the static exploitation (SE, a velocity updating strategy considering inertia-free velocity), and the direction search (DS) of Rosenbrock method, into the original PSO. With this hybrid, on the one hand, extensive exploration is still maintained by PSO; on the other hand, the SE is responsible for locating a small region, and then the DS further intensifies the search. The SDPSO algorithm was implemented and tested on unconstrained benchmark problems (CEC2014) and some constrained engineering design problems. The performance of SDPSO is compared with that of other optimization algorithms, and the results show that SDPSO has a competitive performance.


2020 ◽  
Vol 10 (1) ◽  
pp. 56-64 ◽  
Author(s):  
Neeti Kashyap ◽  
A. Charan Kumari ◽  
Rita Chhikara

AbstractWeb service compositions are commendable in structuring innovative applications for different Internet-based business solutions. The existing services can be reused by the other applications via the web. Due to the availability of services that can serve similar functionality, suitable Service Composition (SC) is required. There is a set of candidates for each service in SC from which a suitable candidate service is picked based on certain criteria. Quality of service (QoS) is one of the criteria to select the appropriate service. A standout amongst the most important functionality presented by services in the Internet of Things (IoT) based system is the dynamic composability. In this paper, two of the metaheuristic algorithms namely Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) are utilized to tackle QoS based service composition issues. QoS has turned into a critical issue in the management of web services because of the immense number of services that furnish similar functionality yet with various characteristics. Quality of service in service composition comprises of different non-functional factors, for example, service cost, execution time, availability, throughput, and reliability. Choosing appropriate SC for IoT based applications in order to optimize the QoS parameters with the fulfillment of user’s necessities has turned into a critical issue that is addressed in this paper. To obtain results via simulation, the PSO algorithm is used to solve the SC problem in IoT. This is further assessed and contrasted with GA. Experimental results demonstrate that GA can enhance the proficiency of solutions for SC problem in IoT. It can also help in identifying the optimal solution and also shows preferable outcomes over PSO.


2016 ◽  
Vol 40 (5) ◽  
pp. 883-895 ◽  
Author(s):  
Wen-Jong Chen ◽  
Chuan-Kuei Huang ◽  
Qi-Zheng Yang ◽  
Yin-Liang Yang

This paper combines the Taguchi-based response surface methodology (RSM) with a multi-objective hybrid quantum-behaved particle swarm optimization (MOHQPSO) to predict the optimal surface roughness of Al7075-T6 workpiece through a CNC turning machining. First, the Taguchi orthogonal array L27 (36) was applied to determine the crucial cutting parameters: feed rate, tool relief angle, and cutting depth. Subsequently, the RSM was used to construct the predictive models of surface roughness (Ra, Rmax, and Rz). Finally, the MOHQPSO with mutation was used to determine the optimal roughness and cutting conditions. The results show that, compared with the non-optimization, Taguchi and classical multi-objective particle swarm optimization methods (MOPSO), the roughness Ra using MOHQPSO along the Pareto optimal solution are improved by 68.24, 59.31 and 33.80%, respectively. This reveals that the predictive models established can improve the machining quality in CNC turning of Al7075-T6.


Sign in / Sign up

Export Citation Format

Share Document