scholarly journals Control of ABA Signaling and Crosstalk With Other Hormones by Selective Degradation of Pathway Components

Author(s):  
Agnieszka Sirko ◽  
Anna Wawrzyńska ◽  
Jerzy Brzywczy ◽  
Marzena Sieńko

A rapid and appropriate genetic and metabolic acclimation, which is crucial for plants’ survival in a changing environment, is maintained due to the coordinated action of plant hormones and cellular degradation mechanisms influencing proteostasis. The plant hormone abscisic acid (ABA) rapidly accumulates in plants in response to environmental stress and plays a pivotal role in the reaction to various stimuli. Increasing evidence demonstrates a significant role of autophagy in controlling ABA signaling. This field has been extensively investigated and new discoveries are constantly being provided. We present updated information on the components of the ABA signaling pathway, particularly on transcription factors modified by different E3 ligases. Then, we focus on the role of selective autophagy in ABA pathway control and review novel evidence on the involvement of autophagy in different parts of the ABA signaling pathway that are important for crosstalk with other hormones, particularly cytokinins and brassinosteroids.

2021 ◽  
Vol 22 (9) ◽  
pp. 4638
Author(s):  
Agnieszka Sirko ◽  
Anna Wawrzyńska ◽  
Jerzy Brzywczy ◽  
Marzena Sieńko

A rapid and appropriate genetic and metabolic acclimation, which is crucial for plants’ survival in a changing environment, is maintained due to the coordinated action of plant hormones and cellular degradation mechanisms influencing proteostasis. The plant hormone abscisic acid (ABA) rapidly accumulates in plants in response to environmental stress and plays a pivotal role in the reaction to various stimuli. Increasing evidence demonstrates a significant role of autophagy in controlling ABA signaling. This field has been extensively investigated and new discoveries are constantly being provided. We present updated information on the components of the ABA signaling pathway, particularly on transcription factors modified by different E3 ligases. Then, we focus on the role of selective autophagy in ABA pathway control and review novel evidence on the involvement of autophagy in different parts of the ABA signaling pathway that are important for crosstalk with other hormones, particularly cytokinins and brassinosteroids.


Genetics ◽  
2002 ◽  
Vol 161 (3) ◽  
pp. 1247-1255 ◽  
Author(s):  
Eiji Nambara ◽  
Masaharu Suzuki ◽  
Suzanne Abrams ◽  
Donald R McCarty ◽  
Yuji Kamiya ◽  
...  

Abstract The plant hormone abscisic acid (ABA) controls many aspects of plant growth and development under a diverse range of environmental conditions. To identify genes functioning in ABA signaling, we have carried out a screen for mutants that takes advantage of the ability of wild-type Arabidopsis seeds to respond to (−)-(R)-ABA, an enantiomer of the natural (+)-(S)-ABA. The premise of the screen was to identify mutations that preferentially alter their germination response in the presence of one stereoisomer vs. the other. Twenty-six mutants were identified and genetic analysis on 23 lines defines two new loci, designated CHOTTO1 and CHOTTO2, and a collection of new mutant alleles of the ABA-insensitive genes, ABI3, ABI4, and ABI5. The abi5 alleles are less sensitive to (+)-ABA than to (−)-ABA. In contrast, the abi3 alleles exhibit a variety of differences in response to the ABA isomers. Genetic and molecular analysis of these alleles suggests that the ABI3 transcription factor may perceive multiple ABA signals.


2019 ◽  
Author(s):  
Irene A Vos ◽  
Adriaan Verhage ◽  
Lewis G Watt ◽  
Ido Vlaardingerbroek ◽  
Robert C Schuurink ◽  
...  

AbstractJasmonic acid (JA) is an important plant hormone in the regulation of defenses against chewing herbivores and necrotrophic pathogens. In Arabidopsis thaliana, the JA response pathway consists of two antagonistic branches that are regulated by MYC- and ERF-type transcription factors, respectively. The role of abscisic acid (ABA) and ethylene (ET) in the molecular regulation of the MYC/ERF antagonism during plant-insect interactions is still unclear. Here, we show that production of ABA induced in response to leaf-chewing Pieris rapae caterpillars is required for both the activation of the MYC-branch and the suppression of the ERF-branch during herbivory. Exogenous application of ABA suppressed ectopic ERF-mediated PDF1.2 expression in 35S::ORA59 plants. Moreover, the GCC-box promoter motif, which is required for JA/ET-induced activation of the ERF-branch genes ORA59 and PDF1.2, was targeted by ABA. Application of gaseous ET counteracted activation of the MYC-branch and repression of the ERF-branch by P. rapae, but infection with the ET-inducing necrotrophic pathogen Botrytis cinerea did not. Accordingly, P. rapae performed equally well on B. cinerea-infected and control plants, whereas activation of the MYC-branch resulted in reduced caterpillar performance. Together, these data indicate that upon feeding by P. rapae, ABA is essential for activating the MYC-branch and suppressing the ERF-branch of the JA pathway, which maximizes defense against caterpillars.


2015 ◽  
Vol 25 (2) ◽  
pp. 82-98 ◽  
Author(s):  
Bas J.W. Dekkers ◽  
Leónie Bentsink

AbstractPhysiological dormancy has been described as a physiological inhibiting mechanism that prevents radicle emergence. It can be caused by the embryo (embryo dormancy) as well as by the structures that cover the embryo. One of its functions is to time plant growth and reproduction to the most optimal season and therefore, in nature, dormancy is an important adaptive trait that is under selective pressure. Dormancy is a complex trait that is affected by many loci, as well as by an intricate web of plant hormone interactions. Moreover, it is strongly affected by a multitude of environmental factors. Its induction, maintenance, cycling and loss come down to the central paradigm, which is the balance between two key hormonal regulators, i.e. the plant hormone abscisic acid (ABA), which is required for dormancy induction, and gibberellins (GA), which are required for germination. In this review we will summarize recent developments in dormancy research (mainly) in the model plant Arabidopsis thaliana, focusing on two key players for dormancy induction, i.e. the plant hormone ABA and the DELAY OF GERMINATION 1 (DOG1) gene. We will address the role of ABA and DOG1 in relation to various aspects of seed dormancy, i.e. induction during seed maturation, loss during dry seed afterripening, the rehydrated state (including dormancy cycling) and the switch to germination.


2017 ◽  
Author(s):  
Mingxing Tu ◽  
Xianhang Wang ◽  
Yanxun Zhu ◽  
Dejun Wang ◽  
Xuechuan Zhang ◽  
...  

AbstractDrought stress limits the growth and development of grapevines, thereby reducing productivity, but the mechanisms by which grapevines respond to drought stress remain largely uncharacterized. Here, we characterized a group A bZIP gene from ‘Kyoho’ grapevine, VlbZIP30, which was shown to be induced by abscisic acid (ABA) and dehydration stress. Overexpression of VlbZIP30 in transgenic Arabidopsis enhanced dehydration tolerance during seed germination, and in the seedling and adult stages. Transcriptome analysis revealed that a major proportion of ABA- and/or drought-responsive genes are transcriptionally regulated by VlbZIP30 during ABA or mannitol treatment at the cotyledon greening stage. We identified an A. thaliana G-box motif (CACGTG) and a potential grapevine G-box motif (MCACGTGK) in the promoters of the 39 selected A. thaliana genes up-regulated in the transgenic plants and in the 35 grapevine homologs, respectively. Subsequently, using two grapevine-related databases, we found that 74% and 84% (a total of 27 genes) of the detected grapevine genes were significantly up-regulated by ABA and drought stress, respectively, suggesting that these 27 genes involve in ABA or dehydration stress and may be regulated by VlbZIP30 in grapevine. We propose that VlbZIP30 functions as a positive regulator of drought-responsive signaling in the ABA core signaling pathway.HighlightVlbZIP30 positively regulate plant drought tolerance through regulated the expression of 27 grapevine candidate genes via G-box cis-element (MCACGTGK) in ABA signaling pathway.


2016 ◽  
Vol 9 (1) ◽  
pp. 136-147 ◽  
Author(s):  
Marta Peirats-Llobet ◽  
Soon-Ki Han ◽  
Miguel Gonzalez-Guzman ◽  
Cheol Woong Jeong ◽  
Lesia Rodriguez ◽  
...  

2018 ◽  
Vol 19 (11) ◽  
pp. 3577 ◽  
Author(s):  
Xu Wang ◽  
Zhazira Yesbergenova-Cuny ◽  
Catherine Biniek ◽  
Christophe Bailly ◽  
Hayat El-Maarouf-Bouteau ◽  
...  

Dormant Arabidopsis (Arabidopsis thaliana) seeds do not germinate easily at temperatures higher than 10–15 °C. Using mutants affected in ethylene signaling (etr1, ein2 and ein4) and in the N-end-rule pathway of the proteolysis (prt6 and ate1-ate2) we have investigated the effects of cold and ethylene on dormancy alleviation. Ethylene (10–100 ppm) and 2–4 days chilling (4 °C) strongly stimulate the germination of wild type (Col-0) seeds at 25 °C. Two to four days of chilling promote the germination at 25 °C of all the mutants suggesting that release of dormancy by cold did not require ethylene and did not require the N-end-rule pathway. One mutant (etr1) that did not respond to ethylene did not respond to GA3 either. Mutants affected in the N-end rule (prt6 and ate1-ate2) did not respond to ethylene indicating that also this pathway is required for dormancy alleviation by ethylene; they germinated after chilling and in the presence of GA3. Cold can activate the ethylene signaling pathway since it induced an accumulation of ETR1, EINI4, and EIN2 transcripts, the expression of which was not affected by ethylene and GA3. Both cold followed by 10 h at 25 °C and ethylene downregulated the expression of PRT6, ATE1, ATE2, and of ABI5 involved in ABA signaling as compared to dormant seeds incubated at 25 °C. In opposite, the expression of RGA, GAI, and RGL2 encoding three DELLAs was induced at 4 °C but downregulated in the presence of ethylene.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jun Yuan ◽  
Jun Meng ◽  
Xiao Liang ◽  
E Yang ◽  
Xu Yang ◽  
...  

Organic molecules of biochar’s leacheates are known to increase the cold resistance of rice seedlings. Yet, it remains unclear whether the organic molecules of biochar leacheates can interact with the abscisic acid (ABA) signaling pathway associated with low temperature. This study used experiments and bioinformatics (molecular docking) to determine which of the organic molecules of biochar’s leacheates could influence the ABA signaling pathway. Specifically, we investigated whether these molecules affected ABA, a plant hormone linked to cold resistance. The contents of endogenous ABA and its precursor carotenoids were determined under low-temperature stress (10°C) and treatment with different concentrations of biochar leacheates. With increased leacheate concentrations, the endogenous ABA and carotenoid contents also increased, as did the expression of ABA- and cold-related genes. When rice seedlings were instead treated with exogenous ABA, it also affected the above-measured indexes; hence, we surmised that certain water-soluble organic molecules of biochar could exert a similar effect as ABA. We first used gas chromatography/mass spectrometry (GC/MS) to identify the organic molecules in the biochar extract, and then we used molecular docking software Autodock to show how they interact. We found that the molecule (1R, 2R, 4S)-2-(6-chloropyridin-3-yl)-7-azabicyclo(2.2.1)heptane was simplified, as Cyah could dock with the ABA receptor protein OsPYL2 in rice, which shows Cyah in biochar is probably an analog of ABA, with a similar function. Based on these results, we conclude that organic molecules of biochar’s leacheates could enter into rice plants and interact with ABA-related proteins to affect the ABA signaling pathway, thereby improving the cold stress resistance of plants.


Sign in / Sign up

Export Citation Format

Share Document