scholarly journals VlbZIP30 of grapevine functions in drought tolerance via the abscisic acid core signaling pathway

2017 ◽  
Author(s):  
Mingxing Tu ◽  
Xianhang Wang ◽  
Yanxun Zhu ◽  
Dejun Wang ◽  
Xuechuan Zhang ◽  
...  

AbstractDrought stress limits the growth and development of grapevines, thereby reducing productivity, but the mechanisms by which grapevines respond to drought stress remain largely uncharacterized. Here, we characterized a group A bZIP gene from ‘Kyoho’ grapevine, VlbZIP30, which was shown to be induced by abscisic acid (ABA) and dehydration stress. Overexpression of VlbZIP30 in transgenic Arabidopsis enhanced dehydration tolerance during seed germination, and in the seedling and adult stages. Transcriptome analysis revealed that a major proportion of ABA- and/or drought-responsive genes are transcriptionally regulated by VlbZIP30 during ABA or mannitol treatment at the cotyledon greening stage. We identified an A. thaliana G-box motif (CACGTG) and a potential grapevine G-box motif (MCACGTGK) in the promoters of the 39 selected A. thaliana genes up-regulated in the transgenic plants and in the 35 grapevine homologs, respectively. Subsequently, using two grapevine-related databases, we found that 74% and 84% (a total of 27 genes) of the detected grapevine genes were significantly up-regulated by ABA and drought stress, respectively, suggesting that these 27 genes involve in ABA or dehydration stress and may be regulated by VlbZIP30 in grapevine. We propose that VlbZIP30 functions as a positive regulator of drought-responsive signaling in the ABA core signaling pathway.HighlightVlbZIP30 positively regulate plant drought tolerance through regulated the expression of 27 grapevine candidate genes via G-box cis-element (MCACGTGK) in ABA signaling pathway.

2021 ◽  
Vol 12 ◽  
Author(s):  
Liru Cao ◽  
Xiaomin Lu ◽  
Guorui Wang ◽  
Qianjin Zhang ◽  
Xin Zhang ◽  
...  

Analyzing the transcriptome of maize leaves under drought stress and rewatering conditions revealed that transcription factors were involved in this process, among which ZmbZIP33 of the ABSCISIC ACID-INSENSITIVE 5-like protein 5 family was induced to significantly up-regulated. The functional mechanism of ZmbZIP33 in Abscisic acd (ABA) signaling pathway and its response to drought stress and rewatering has not been studied yet. The present study found that ZmbZIP33 contains a DNA-binding and dimerization domain, has transcriptional activation activity, and is highly homologous to SbABI1,SitbZIP68 and OsABA1. The expression of ZmbZIP33 is strongly up-regulated by drought, high salt, high temperature, and ABA treatments. Overexpression of ZmbZIP33 remarkably increased chlorophyll content and root length after drought stress and rewatering, and, moreover, cause an accumulation of ABA content, thereby improving drought resistance and recovery ability in Arabidopsis. However, silencing the expression of ZmbZIP33 (BMV-ZmbZIP33) remarkably decreased chlorophyll content, ABA content, superoxide dismutase and peroxidase activities, and increased stomatal opening and water loss rate compared with BMV (control). It showed that silencing ZmbZIP33 lead to reduced drought resistance and recovery ability of maize. ABA sensitivity analysis found that 0.5 and 1 μmol/L treatments severely inhibited the root development of overexpression ZmbZIP33 transgenic Arabidopsis. However, the root growth of BMV was greatly inhibited for 1 and 5μmol/L ABA treatments, but not for BMV-ZmbZIP33. Subcellular localization, yeast two-hybrid and BIFC further confirmed that the core components of ABA signaling pathways ZmPYL10 and ZmPP2C7 interacted in nucleus, ZmPP2C7 and ZmSRK2E as well as ZmSRK2E and ZmbZIP33 interacted in the plasma membrane. We also found that expression levels of ZmPYL10 and ZmSRK2E in the BMV-ZmbZIP33 mutant were lower than those of BMV, while ZmPP2C7 was the opposite under drought stress and rewatering. However, expression of ZmPYL10 and ZmSRK2E in normal maize leaves were significantly up-regulated by 3–4 folds after drought and ABA treatments for 24 h, while ZmPP2C7 was down-regulated. The NCED and ZEP encoding key enzymes in ABA biosynthesis are up-regulated in overexpression ZmbZIP33 transgenic line under drought stress and rewatering conditions, but down-regulated in BMV-ZmbZIP33 mutants. Together, these findings demonstrate that ZmbZIP33 played roles in ABA biosynthesis and regulation of drought response and rewatering in Arabidopsis and maize thought an ABA-dependent signaling pathway.


Genetics ◽  
2002 ◽  
Vol 161 (3) ◽  
pp. 1247-1255 ◽  
Author(s):  
Eiji Nambara ◽  
Masaharu Suzuki ◽  
Suzanne Abrams ◽  
Donald R McCarty ◽  
Yuji Kamiya ◽  
...  

Abstract The plant hormone abscisic acid (ABA) controls many aspects of plant growth and development under a diverse range of environmental conditions. To identify genes functioning in ABA signaling, we have carried out a screen for mutants that takes advantage of the ability of wild-type Arabidopsis seeds to respond to (−)-(R)-ABA, an enantiomer of the natural (+)-(S)-ABA. The premise of the screen was to identify mutations that preferentially alter their germination response in the presence of one stereoisomer vs. the other. Twenty-six mutants were identified and genetic analysis on 23 lines defines two new loci, designated CHOTTO1 and CHOTTO2, and a collection of new mutant alleles of the ABA-insensitive genes, ABI3, ABI4, and ABI5. The abi5 alleles are less sensitive to (+)-ABA than to (−)-ABA. In contrast, the abi3 alleles exhibit a variety of differences in response to the ABA isomers. Genetic and molecular analysis of these alleles suggests that the ABI3 transcription factor may perceive multiple ABA signals.


2015 ◽  
Vol 723 ◽  
pp. 705-710
Author(s):  
Wei Shun Cheng ◽  
Dan Li Zeng ◽  
Na Zhang ◽  
Hong Xia Zeng ◽  
Xian Feng Shi ◽  
...  

The effects of exogenous abscisic acid and two sulfonamide compounds: Sulfacetamide and Sulfasalazine were studied on tolerance of watermelon [Citrullus lanatus (Thunb.) Matsum. & Nakai var. lanatus] under drought stress and compared with abscisic acid effects. Eight-week old plants were treated with ABA (10 and 25 mg/L), Sulfacetamide (25, 50 and 100 mg/L) and Sulfasalazine (25,50 and 100 mg/L). Solutions were sprayed daily and sampling was done at 0 h, 48 h, 96 h, 144 h and 48 h after re-watering (recovery phase or 192 h). Treated plants showed relatively greater drought tolerance. This indicates that, Sulfacetamide and Sulfasalazine may improve resistance in watermelon, like ABA, increasing levels of proline, glycine betaine and malondialdehyde and the activity of ascorbate peroxidase. Daily application of Sulfasalazine and Sulfacetamide during drought stress period was effective in increasing watermelon plants tolerance to drought as was ABA.


2018 ◽  
Vol 61 (4) ◽  
pp. 473-477 ◽  
Author(s):  
Chan Young Jeong ◽  
Won Je Lee ◽  
Hai An Truong ◽  
Cao Sơn Trịnh ◽  
Suk-Whan Hong ◽  
...  

Antioxidants ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 161 ◽  
Author(s):  
Muhammad Junaid Rao ◽  
Yuantao Xu ◽  
Xiaomei Tang ◽  
Yue Huang ◽  
Jihong Liu ◽  
...  

CYTOCHROME P450s genes are a large gene family in the plant kingdom. Our earlier transcriptome data revealed that a CYTOCHROME P450 gene of Citrus sinensis (CsCYT75B1) was associated with flavonoid metabolism and was highly induced after drought stress. Here, we characterized the function of CsCYT75B1 in drought tolerance by overexpressing it in Arabidopsis thaliana. Our results demonstrated that the overexpression of the CsCYT75B1 gene significantly enhanced the total flavonoid contents with increased antioxidant activity in transgenic Arabidopsis. The gene expression results showed that several genes that are responsible for the biosynthesis of antioxidant flavonoids were induced by 2–12 fold in transgenic Arabidopsis lines. After 14 days of drought stress, all transgenic lines displayed an enhanced tolerance to drought stress along with accumulating antioxidant flavonoids with lower superoxide radicals and reactive oxygen species (ROS) than wild type plants. In addition, drought-stressed transgenic lines possessed higher antioxidant enzymatic activities than wild type transgenic lines. Moreover, the stressed transgenic lines had significantly lower levels of electrolytic leakage than wild type transgenic lines. These results demonstrate that the CsCYT75B1 gene of sweet orange functions in the metabolism of antioxidant flavonoid and contributes to drought tolerance by elevating ROS scavenging activities.


2019 ◽  
Vol 48 (4) ◽  
pp. 1047-1063
Author(s):  
Huili Zhang ◽  
Chuang Yuan ◽  
Guillian Mao ◽  
Xue Gao ◽  
Liu Zhu ◽  
...  

Saline-alkali and drought stresses are one of the abiotic stress factors that limit the normal growth and development of plants. In this work, various agronomic indexes including growth physiology and yield attributes were studied under saline-alkali and drought stress treatments. It was found that the limit of plant growth and development caused by drought stress is much higher than that of saline-alkali stress (p < 0.01). Based on the comprehensive evaluation value (D value), under saline-alkali stress condition, 36 maize varieties could be divided into four groups by cluster analysis (CA): High saline-alkali tolerance (3 varieties), medium saline-alkali tolerant(10 varieties), saline-alkali sensitive (19 varieties), high saline-alkali sensitive (4 varieties). In drought stress condition, 36 maize varieties could be divided into five groups by cluster analysis (CA): High drought-tolerance (2 varieties), medium drought-tolerant (14 varieties), low drought-tolerant (15 varieties), drought-sensitive (4 varieties), high drought-sensitive (1 variety). Therefore, this study provides a comprehensive screening of maize varieties under saline-alkali and drought stresses.


PLoS ONE ◽  
2016 ◽  
Vol 11 (9) ◽  
pp. e0163082 ◽  
Author(s):  
Dongyun Ma ◽  
Huina Ding ◽  
Chenyang Wang ◽  
Haixia Qin ◽  
Qiaoxia Han ◽  
...  

2016 ◽  
Vol 17 (5) ◽  
pp. 693 ◽  
Author(s):  
Muhammad Jaffar ◽  
Aiping Song ◽  
Muhammad Faheem ◽  
Sumei Chen ◽  
Jiafu Jiang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document