scholarly journals Substitution Arg140Gly in HA/H7 attenuated highly pathogenic avian influenza virus FPV/Rostock/34 (H7N1)

Author(s):  
Yulia Postnikova ◽  
Anastasia Treshchalina ◽  
Elizaveta Boravleva ◽  
Alexandra Gambaryan ◽  
Aydar Ishmukhametov ◽  
...  

The H7 subtype of avian influenza viruses (AIV) stands out among other AIV. H7 viruses circulate in ducks, poultry, equine and have repeatedly caused outbreaks of disease in humans. In order to study the pathogenicity factors of H7N1 viruses, several laboratory variants of the A/FPV/Rostock/34 (H7N1) strain were obtained by passages in the chicken lungs. After 10 such passages, a variant was obtained that differed from the parent virus by amino acid substitutions Val109Phe in PB2, Gln621Lys in PB1, Thr32Ala and Leu586Phe in PA Gly140Arg in HA1 and Ala101Thr in HA2 (numbering by H3), Ser82Arg in M2, Arg118Lys and Met124Arg in NS1. No differences were found in proteins NA, NP, M1 and NS2. The resulting variant was hundreds of times more pathogenic for chickens than the original laboratory variant of the virus. The study of intermediate passages showed that the jump in pathogenicity occurs sharply between the fifth and sixth passage through the chicken lungs. By cloning these variants, a pair of strains (R5p and R6p) were obtained, and the complete genomes of these strains were sequenced. Single amino acid substitution was revealed, namely Gly140Arg in HA1. It is important to emphasize that this substitution is a reversion, since Arg is located in position 140 HA1 of original the A/FPV/Rostock/34 (H7N1) virus (GenBank). This amino acid is located at the head part of the hemagglutinin, adjacent to the receptor-binding site. In addition to the increased pathogenicity, R6p differs from R5p by an increased affinity for a negatively charged receptor analogue, an increased affinity for MDCK cells, while maintaining a receptor specificity profile.

Viruses ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1584
Author(s):  
Anastasia Treshchalina ◽  
Yulia Postnikova ◽  
Elizaveta Boravleva ◽  
Alexandra Gambaryan ◽  
Alla Belyakova ◽  
...  

The H7 subtype of avian influenza viruses (AIV) stands out among other AIV. The H7 viruses circulate in ducks, poultry and equines and have repeatedly caused outbreaks of disease in humans. The laboratory strain A/chicken/Rostock/R0p/1934 (H7N1) (R0p), which was previously derived from the highly pathogenic strain A/FPV/Rostock/1934 (H7N1), was studied in this work to ascertain its biological property, genome stability and virulent changing mechanism. Several virus variants were obtained by serial passages in the chicken lungs. After 10 passages of this virus through the chicken lungs we obtained a much more pathogenic variant than the starting R0p. The study of intermediate passages showed a sharp increase in pathogenicity between the fifth and sixth passage. By cloning these variants, a pair of strains (R5p and R6p) was obtained, and the complete genomes of these strains were sequenced. Single amino acid substitution was revealed, namely reversion Gly140Arg in HA1. This amino acid is located at the head part of the hemagglutinin, adjacent to the receptor-binding site. In addition to the increased pathogenicity in chicken and mice, R6p differs from R5p in the shape of foci in cell culture and an increased affinity for a negatively charged receptor analogue, while maintaining a pattern of receptor-binding specificity and the pH of conformational change of HA.


Author(s):  
Anastasia Treshchalina ◽  
Yulia Postnikova ◽  
Elizaveta Boravleva ◽  
Alexandra Gambaryan ◽  
Alla Belyakova ◽  
...  

The H7 subtype of avian influenza viruses (AIV) stands out among other AIV. The H7 viruses cir-culate in ducks, poultry, equine and have repeatedly caused outbreaks of disease in humans. In or-der to study the pathogenicity factors of H7N1 viruses, several variants were obtained, starting with laboratory strain, with a history of 12 passages through chicken embryos. This strain, A/chicken/Rostock/R0p/1934(H7N1) (R0p) had only 3 substitution in HA relatively A/Chicken/Rostock/45/34(H7N1), substitution Arg140Gly among them. 10 variants of this strain was obtained and studied to ascertain its biological property, genome stability and factors of patho-genicity. Strain R0p had decreased virulence for chicken, comparing with described in literature virulence of A/FPV Rostock/34 and A/chicken/Rostock/34 viruses. After 10 passages through the chicken lungs variant was obtained much more pathogenic than the starting R0p. The study of in-termediate passages through the chicken lungs showed that the jump in pathogenicity had occurred sharply between the fifth and sixth passage. By cloning these variants, a pair of strains (R5p and R6p) were obtained, and the complete genomes of these strains were sequenced. Single amino acid substitution was revealed, namely reversion Gly140Arg in HA1. This amino acid is located at the head part of the hemagglutinin, adjacent to the receptor-binding site. In addition to the increased pathogenicity for chicken and mice, R6p differs from R5p in the pattern of foci in cell culture and an increased affinity for a negatively charged receptor analogue, while maintaining a pattern of recep-tor binding specificity and the pH optimum of the HA conformational change.


2020 ◽  
Vol 94 (13) ◽  
Author(s):  
Dirk Eggink ◽  
Monique Spronken ◽  
Roosmarijn van der Woude ◽  
Jocynthe Buzink ◽  
Frederik Broszeit ◽  
...  

ABSTRACT Highly pathogenic avian influenza (HPAI) viruses are enzootic in wild birds and poultry and continue to cause human infections with high mortality. To date, more than 850 confirmed human cases of H5N1 virus infection have been reported, of which ∼60% were fatal. Global concern persists that these or similar avian influenza viruses will evolve into viruses that can transmit efficiently between humans, causing a severe influenza pandemic. It was shown previously that a change in receptor specificity is a hallmark for adaptation to humans and evolution toward a transmittable virus. Substantial genetic diversity was detected within the receptor binding site of hemagglutinin of HPAI A/H5N1 viruses, evolved during human infection, as detected by next-generation sequencing. Here, we investigated the functional impact of substitutions that were detected during these human infections. Upon rescue of 21 mutant viruses, most substitutions in the receptor binding site (RBS) resulted in viable virus, but virus replication, entry, and stability were often impeded. None of the tested substitutions individually resulted in a clear switch in receptor preference as measured with modified red blood cells and glycan arrays. Although several combinations of the substitutions can lead to human-type receptor specificity, accumulation of multiple amino acid substitutions within a single hemagglutinin during human infection is rare, thus reducing the risk of virus adaptation to humans. IMPORTANCE H5 viruses continue to be a threat for public health. Because these viruses are immunologically novel to humans, they could spark a pandemic when adapted to transmit between humans. Avian influenza viruses need several adaptive mutations to bind to human-type receptors, increase hemagglutinin (HA) stability, and replicate in human cells. However, knowledge on adaptive mutations during human infections is limited. A previous study showed substantial diversity within the receptor binding site of H5N1 during human infection. We therefore analyzed the observed amino acid changes phenotypically in a diverse set of assays, including virus replication, stability, and receptor specificity. None of the tested substitutions resulted in a clear step toward a human-adapted virus capable of aerosol transmission. It is notable that acquiring human-type receptor specificity needs multiple amino acid mutations, and that variability at key position 226 is not tolerated, reducing the risk of them being acquired naturally.


2007 ◽  
Vol 82 (3) ◽  
pp. 1146-1154 ◽  
Author(s):  
Peirong Jiao ◽  
Guobin Tian ◽  
Yanbing Li ◽  
Guohua Deng ◽  
Yongping Jiang ◽  
...  

ABSTRACT In this study, we explored the molecular basis determining the virulence of H5N1 avian influenza viruses in mammalian hosts by comparing two viruses, A/Duck/Guangxi/12/03 (DK/12) and A/Duck/Guangxi/27/03 (DK/27), which are genetically similar but differ in their pathogenicities in mice. To assess the genetic basis for this difference in virulence, we used reverse genetics to generate a series of reassortants and mutants of these two viruses. We found that a single-amino-acid substitution of serine for proline at position 42 (P42S) in the NS1 protein dramatically increased the virulence of the DK/12 virus in mice, whereas the substitution of proline for serine at the same position (S42P) completely attenuated the DK/27 virus. We further demonstrated that the amino acid S42 of NS1 is critical for the H5N1 influenza virus to antagonize host cell interferon induction and for the NS1 protein to prevent the double-stranded RNA-mediated activation of the NF-κB pathway and the IRF-3 pathway. Our results indicate that the NS1 protein is critical for the pathogenicity of H5N1 influenza viruses in mammalian hosts and that the amino acid S42 of NS1 plays a key role in undermining the antiviral immune response of the host cell.


2019 ◽  
Author(s):  
Dagmara Bialy ◽  
Holly Shelton

ABSTRACTNeuraminidase inhibitors (NAIs) are antiviral agents recommended worldwide to treat or prevent influenza virus infections in humans. Mapping of functional resistance to currently licensed NAIs has been limited to human influenza viruses with only sporadic reports investigating avian influenza viruses (AIV). However past pandemics as well as the increasing number of humans infected with AIV have shown the importance of having information about avian NAs that could cross the species barrier. In this study we introduced four NAI resistance-associated mutations previously found in human strains into the NA of six prevalent AIV subtypes that threaten the poultry industry and human health: H7N9, H6N1, H4N6 and highly pathogenic H5N8, H5N6 and H5N2. Using the established MUNANA assay we show that R292K substitution significantly impaired NA activity in all strains, whereas E119V, H274Y and N294S have more variable effects on NA activity. The impact of these mutations on NAI susceptibility was drug- and strain-specific. We have shown that despite compromised NA activity drug-resistant H5N6 and H6N1 viruses replicated to comparable or significantly higher titres in primary chicken cells as compared to wild type. The replicative fitness of NAI-resistant H5N6 was also confirmedin ovo. Two drug resistant H5N6 viruses had single amino acid substitutions in their haemagglutinin (HA) which reduced receptor binding properties. Our results demonstrate that there are no universal NAI resistance determinants for all strains and although some are clearly deleterious for the virus, others can be rapidly compensated by acquiring concurrent changes in other gene segments.IMPORTANCEThe number of human infections caused by avian influenza viruses (AIV) keeps increasing. This together with the rapid emergence of influenza strains resistant to neuraminidase inhibitor drugs (NAIs) observed in the past raises a significant concern to public health. We studied the NAI resistance-associated molecular changes, previously reported in neuraminidase (NA) of human influenza, in AIV background. We found that single amino acid substitution can confer a multidrug resistance, or lead to a single-drug resistance across multiple virus subtypes. We also found that the drug-resistant viruses retained or showed enhanced fitness properties as compared to the corresponding wild-type, and this could be achieved by quick acquisition of concurrent mutations in haemagglutinin. Our study highlights the need for constant monitoring of NAI-resistance in AIV and understanding the molecular basis of antiviral resistance, as such information would be invaluable for pandemic preparedness and may facilitate the development of novel therapeutics.


2006 ◽  
Vol 80 (22) ◽  
pp. 11115-11123 ◽  
Author(s):  
Zejun Li ◽  
Yongping Jiang ◽  
Peirong Jiao ◽  
Aiqin Wang ◽  
Fengju Zhao ◽  
...  

ABSTRACT In the present study, we explored the genetic basis underlying the virulence and host range of two H5N1 influenza viruses in chickens. A/goose/Guangdong/1/96 (GS/GD/1/96) is a highly pathogenic virus for chickens, whereas A/goose/Guangdong/2/96 (GS/GD/2/96) is unable to replicate in chickens. These two H5N1 viruses differ in sequence by only five amino acids mapping to the PA, NP, M1, and NS1 genes. We used reverse genetics to create four single-gene recombinants that contained one of the sequence-differing genes from nonpathogenic GS/GD/2/96 and the remaining seven gene segments from highly pathogenic GS/GD/1/96. We determined that the NS1 gene of GS/GD/2/96 inhibited the replication of GS/GD/1/96 in chickens, while the substitution of the PA, NP, or M gene did not change the highly pathogenic properties of GS/GD/1/96. Conversely, of the recombinant viruses generated in the GS/GD/2/96 background, only the virus containing the NS1 gene of GS/GD/1/96 was able to replicate and cause disease and death in chickens. The single-amino-acid difference in the sequence of these two NS1 genes resides at position 149. We demonstrate that a recombinant virus expressing the GS/GD/1/96 NS1 protein with Ala149 is able to antagonize the induction of interferon protein levels in chicken embryo fibroblasts (CEFs), but a recombinant virus carrying a Val149 substitution is not capable of the same effect. These results indicate that the NS1 gene is critical for the pathogenicity of avian influenza virus in chickens and that the amino acid residue Ala149 correlates with the ability of these viruses to antagonize interferon induction in CEFs.


2005 ◽  
Vol 79 (17) ◽  
pp. 11412-11421 ◽  
Author(s):  
Chang-Won Lee ◽  
David E. Swayne ◽  
Jose A. Linares ◽  
Dennis A. Senne ◽  
David L. Suarez

ABSTRACT In early 2004, an H5N2 avian influenza virus (AIV) that met the molecular criteria for classification as a highly pathogenic AIV was isolated from chickens in the state of Texas in the United States. However, clinical manifestations in the affected flock were consistent with avian influenza caused by a low-pathogenicity AIV and the representative virus (A/chicken/Texas/298313/04 [TX/04]) was not virulent for experimentally inoculated chickens. The hemagglutinin (HA) gene of the TX/04 isolate was similar in sequence to A/chicken/Texas/167280-4/02 (TX/02), a low-pathogenicity AIV isolate recovered from chickens in Texas in 2002. However, the TX/04 isolate had one additional basic amino acid at the HA cleavage site, which could be attributed to a single point mutation. The TX/04 isolate was similar in sequence to TX/02 isolate in several internal genes (NP, M, and NS), but some genes (PA, PB1, and PB2) had sequence of a clearly different origin. The TX/04 isolate also had a stalk deletion in the NA gene, characteristic of a chicken-adapted AIV. By analyzing viruses constructed by in vitro mutagenesis followed by reverse genetics, we found that the pathogenicity of the TX/04 virus could be increased in vitro and in vivo by the insertion of an additional basic amino acid at the HA cleavage site and not by the loss of a glycosylation site near the cleavage site. Our study provides the genetic and biologic characteristics of the TX/04 isolate, which highlight the complexity of the polygenic nature of the virulence of influenza viruses.


Sign in / Sign up

Export Citation Format

Share Document