scholarly journals 2D-Heterostructure Photonic Crystal Formation for On-Chip Polarization Division Multiplexing

Author(s):  
Nikolay L. Kazanskiy ◽  
Muhammad Ali Butt ◽  
Svetlana Nikolaevna Khonina

Herein, we offer a numerical study on the devising of a unique 2D-heterostructure Photonic crystal (PC) that can split two orthogonally polarized light waves. The analysis is performed via a two-dimensional finite element method (2D-FEM) by utilizing COMSOL Multiphysics software. The device consists of two discrete designs of PC formation. The first PC formation is optimized so that it permits both TE and TM-polarization of light to transmit through it. Whereas the second PC formation possesses a Photonic Bandgap (PBG) only for TE-polarized light. These two formations are combined at an angle of 45 degrees, resulting in a reflection of self-collimated TE-polarized light at an angle of 90 degrees owing to the PBG present in the second PC formation. While permitting the self-collimated TM-polarized light wave to travel uninterrupted. The proposed device has a small footprint of ~10.5 μm2 offering low transmission loss and high polarization extinction ratio which makes it an ideal candidate to be employed as an on-chip polarization division multiplexing system.

Photonics ◽  
2021 ◽  
Vol 8 (8) ◽  
pp. 313
Author(s):  
Nikolay Lvovich Kazanskiy ◽  
Muhammad Ali Butt ◽  
Svetlana Nikolaevna Khonina

Herein, we offer a numerical study on the devising of a unique 2D-heterostructure photonic crystal (PC) that can split two orthogonally polarized light waves. The analysis is performed via a two-dimensional finite element method (2D-FEM) by utilizing the COMSOL Multiphysics software. The device consists of two discrete designs of PC formation. The first PC formation is optimized so that it permits both TE- and TM-polarization of light to transmit through it. Whereas, the second PC formation possesses a photonic bandgap (PBG) only for TE-polarized light. These two formations are combined at an angle of 45°, resulting in a reflection of self-collimated TE-polarized light at an angle of 90° owing to the PBG present in the second PC formation. While permitting the self-collimated TM-polarized light wave to travel uninterrupted. The proposed device has a small footprint of ~10.9 μm2 offering low transmission loss and high polarization extinction ratio which makes it an ideal candidate to be employed as an on-chip polarization division multiplexing system.


Micromachines ◽  
2020 ◽  
Vol 11 (7) ◽  
pp. 706
Author(s):  
Nan Chen ◽  
Xuedian Zhang ◽  
Xinglian Lu ◽  
Zheng Zhang ◽  
Zhangjian Mu ◽  
...  

A polarization beam splitter is an important component of modern optical system, especially a splitter that combines the structural flexibility of photonic crystal fiber and the optical modulation of functional material. Thus, this paper presents a compact dual-core photonic crystal fiber polarization beam splitter based on thin layer As2S3. The mature finite element method was utilized to simulate the performance of the proposed splitter. Numerical simulation results indicated that at 1.55 μm, when the fiber device length was 1.0 mm, the x- and y-polarized lights could be split out, the extinction ratio could reach −83.6 dB, of which the bandwidth for extinction ratio better than −20 dB was 280 nm. It also had a low insertion loss of 0.18 dB for the x-polarized light. In addition, it can be completely fabricated using existing processes. The proposed compact polarization beam splitter is a promising candidate that can be used in various optical fields.


Materials ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 326
Author(s):  
Cong Chen ◽  
Jiajia Mi ◽  
Panpan Chen ◽  
Xiang Du ◽  
Jianxin Xi ◽  
...  

With the rapid development of on-chip optics, integrated optical devices with better performance are desirable. Waveguide couplers are the typical integrated optical devices, allowing for the fast transmission and conversion of optical signals in a broad working band. However, traditional waveguide couplers are limited by the narrow operation band to couple the spatial light into the chip and the fixed unidirectional transmission of light flow. Furthermore, most of the couplers only realize unidirectional transmission under the illumination of the linear polarized light. In this work, a broadband polarization directional coupler based on a metallic catenary antenna integrated on a silicon-on-insulator (SOI) waveguide has been designed and demonstrated under the illumination of the circularly polarized light. By applying the genetic algorithm to optimize the multiple widths of the metallic catenary antenna, the numerical simulation results show that the extinction ratio of the coupler can be maintained larger than 18 dB in a wide operation band of 300 nm (from 1400 to 1700 nm). Moreover, the coupler can couple the spatial beam into the plane and transmit in the opposite direction by modulating the rotation direction of the incident light. The broadband polarization directional coupler might have great potential in integrated optoelectronic devices and on-chip optical devices.


2015 ◽  
Vol 24 (03) ◽  
pp. 1550036 ◽  
Author(s):  
J. C. Sales ◽  
A. F. G. F. Filho ◽  
A. C. Ferreira ◽  
J. R. R. Sousa ◽  
K. M. V. Avila ◽  
...  

In this work, we present a numerical study to investigate the transmission, extinction ratio, crosstalk and compression factor outputs of a Mach–Zehnder interferometer in photonic crystal fibers by varying the nonlinearity parameter of the fiber from β = 1 to β = 2 for three different nonlinearity profiles (constant, increasing and decreasing) and in three different scenarios (P0= Pc, P0< Pc and P0> Pc). We observed that the highest transmission (T = 67%), the highest extinction ratio (XR = 3.57 dB) and the lowest crosstalk (Xtalk = -5.25 dB) occurred in the third scenario (P0= 110 kW > Pc) considering the decreasing profile for β = 1.35. Such condition enables applications such as TDMA and logic circuits.


2012 ◽  
Vol E95.C (7) ◽  
pp. 1244-1251 ◽  
Author(s):  
Koji TAKEDA ◽  
Tomonari SATO ◽  
Takaaki KAKITSUKA ◽  
Akihiko SHINYA ◽  
Kengo NOZAKI ◽  
...  

Nanophotonics ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 2377-2385 ◽  
Author(s):  
Zhao Cheng ◽  
Xiaolong Zhu ◽  
Michael Galili ◽  
Lars Hagedorn Frandsen ◽  
Hao Hu ◽  
...  

AbstractGraphene has been widely used in silicon-based optical modulators for its ultra-broadband light absorption and ultrafast optoelectronic response. By incorporating graphene and slow-light silicon photonic crystal waveguide (PhCW), here we propose and experimentally demonstrate a unique double-layer graphene electro-absorption modulator in telecommunication applications. The modulator exhibits a modulation depth of 0.5 dB/μm with a bandwidth of 13.6 GHz, while graphene coverage length is only 1.2 μm in simulations. We also fabricated the graphene modulator on silicon platform, and the device achieved a modulation bandwidth at 12 GHz. The proposed graphene-PhCW modulator may have potentials in the applications of on-chip interconnections.


Micromachines ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 54
Author(s):  
Yan-Li Zheng ◽  
Ting-Ting Song ◽  
Jun-Xiong Chai ◽  
Xiao-Ping Yang ◽  
Meng-Meng Yu ◽  
...  

The photoelectric hybrid network has been proposed to achieve the ultrahigh bandwidth, lower delay, and less power consumption for chip multiprocessor (CMP) systems. However, a large number of optical elements used in optical networks-on-chip (ONoCs) generate high transmission loss which will influence network performance severely and increase power consumption. In this paper, the Dijkstra algorithm is adopted to realize adaptive routing with minimum transmission loss of link and reduce the output power of the link transmitter in mesh-based ONoCs. The numerical simulation results demonstrate that the transmission loss of a link in optimized power control based on the Dijkstra algorithm could be maximally reduced compared with traditional power control based on the dimensional routing algorithm. Additionally, it has a greater advantage in saving the average output power of optical transmitter compared to the adaptive power control in previous studies, while the network size expands. With the aid of simulation software OPNET, the network performance simulations in an optimized network revealed that the end-to-end (ETE) latency and throughput are not vastly reduced in regard to a traditional network. Hence, the optimized power control proposed in this paper can greatly reduce the power consumption of s network without having a big impact on network performance.


Nanophotonics ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Ali Rostamian ◽  
Ehsan Madadi-Kandjani ◽  
Hamed Dalir ◽  
Volker J. Sorger ◽  
Ray T. Chen

Abstract Thanks to the unique molecular fingerprints in the mid-infrared spectral region, absorption spectroscopy in this regime has attracted widespread attention in recent years. Contrary to commercially available infrared spectrometers, which are limited by being bulky and cost-intensive, laboratory-on-chip infrared spectrometers can offer sensor advancements including raw sensing performance in addition to use such as enhanced portability. Several platforms have been proposed in the past for on-chip ethanol detection. However, selective sensing with high sensitivity at room temperature has remained a challenge. Here, we experimentally demonstrate an on-chip ethyl alcohol sensor based on a holey photonic crystal waveguide on silicon on insulator-based photonics sensing platform offering an enhanced photoabsorption thus improving sensitivity. This is achieved by designing and engineering an optical slow-light mode with a high group-index of n g  = 73 and a strong localization of modal power in analyte, enabled by the photonic crystal waveguide structure. This approach includes a codesign paradigm that uniquely features an increased effective path length traversed by the guided wave through the to-be-sensed gas analyte. This PIC-based lab-on-chip sensor is exemplary, spectrally designed to operate at the center wavelength of 3.4 μm to match the peak absorbance for ethanol. However, the slow-light enhancement concept is universal offering to cover a wide design-window and spectral ranges towards sensing a plurality of gas species. Using the holey photonic crystal waveguide, we demonstrate the capability of achieving parts per billion levels of gas detection precision. High sensitivity combined with tailorable spectral range along with a compact form-factor enables a new class of portable photonic sensor platforms when combined with integrated with quantum cascade laser and detectors.


Sign in / Sign up

Export Citation Format

Share Document