scholarly journals Closing the Performance Gap between Siamese Networks for Dissimilarity Image Classification and Convolutional Neural Networks

Author(s):  
Loris Nanni ◽  
Giovanni Minchio ◽  
Sheryl Brahnam ◽  
Davide Sarraggiotto ◽  
Alessandra Lumini

In this paper, we examine two strategies for boosting the performance of ensembles of Siamese networks (SNNs) for image classification using two loss functions (Triplet and Binary Cross Entropy) and two methods for building the dissimilarity spaces (FULLY and DEEPER). With FULLY, the distance between a pattern and a prototype is calculated by comparing two images using the fully connected layer of the Siamese network. With DEEPER, each pattern is described using a deeper layer combined with dimensionality reduction. The basic design of the SNNs takes advantage of supervised k-means clustering for building the dissimilarity spaces that train a set of support vector machines, which are then combined by sum rule for a final decision. The robustness and versatility of this approach are demonstrated on several cross-domain image data sets, including a portrait data set, two bioimage and two animal vocalization data sets. Results show that the strategies employed in this work to increase the performance of dissimilarity image classification using SNN is closing the gap with standalone CNNs. Moreover, when our best system is combined with an ensemble of CNNs, the resulting performance is superior to an ensemble of CNNs, demonstrating that our new strategy is extracting additional information.

Sensors ◽  
2021 ◽  
Vol 21 (17) ◽  
pp. 5809
Author(s):  
Loris Nanni ◽  
Giovanni Minchio ◽  
Sheryl Brahnam ◽  
Davide Sarraggiotto ◽  
Alessandra Lumini

In this paper, we examine two strategies for boosting the performance of ensembles of Siamese networks (SNNs) for image classification using two loss functions (Triplet and Binary Cross Entropy) and two methods for building the dissimilarity spaces (FULLY and DEEPER). With FULLY, the distance between a pattern and a prototype is calculated by comparing two images using the fully connected layer of the Siamese network. With DEEPER, each pattern is described using a deeper layer combined with dimensionality reduction. The basic design of the SNNs takes advantage of supervised k-means clustering for building the dissimilarity spaces that train a set of support vector machines, which are then combined by sum rule for a final decision. The robustness and versatility of this approach are demonstrated on several cross-domain image data sets, including a portrait data set, two bioimage and two animal vocalization data sets. Results show that the strategies employed in this work to increase the performance of dissimilarity image classification using SNN are closing the gap with standalone CNNs. Moreover, when our best system is combined with an ensemble of CNNs, the resulting performance is superior to an ensemble of CNNs, demonstrating that our new strategy is extracting additional information.


2021 ◽  
Vol 7 (12) ◽  
pp. 254
Author(s):  
Loris Nanni ◽  
Michelangelo Paci ◽  
Sheryl Brahnam ◽  
Alessandra Lumini

Convolutional neural networks (CNNs) have gained prominence in the research literature on image classification over the last decade. One shortcoming of CNNs, however, is their lack of generalizability and tendency to overfit when presented with small training sets. Augmentation directly confronts this problem by generating new data points providing additional information. In this paper, we investigate the performance of more than ten different sets of data augmentation methods, with two novel approaches proposed here: one based on the discrete wavelet transform and the other on the constant-Q Gabor transform. Pretrained ResNet50 networks are finetuned on each augmentation method. Combinations of these networks are evaluated and compared across four benchmark data sets of images representing diverse problems and collected by instruments that capture information at different scales: a virus data set, a bark data set, a portrait dataset, and a LIGO glitches data set. Experiments demonstrate the superiority of this approach. The best ensemble proposed in this work achieves state-of-the-art (or comparable) performance across all four data sets. This result shows that varying data augmentation is a feasible way for building an ensemble of classifiers for image classification.


Author(s):  
Loris Nanni ◽  
Michelangelo Paci ◽  
Sheryl Brahnam ◽  
Alessandra Lumini

Convolutional Neural Networks (CNNs) have gained prominence in the research literature on image classification over the last decade. One shortcoming of CNNs, however, is their lack of generalizability and tendency to overfit when presented with small training sets. Augmentation directly confronts this problem by generating new data points providing additional information. In this paper, we investigate the performance of more than ten different sets of data augmentation methods, with two novel approaches proposed here: one based on the Discrete Wavelet Transform and the other on the Constant-Q Gabor transform. Pretrained ResNet50 networks are finetuned on each augmentation method. Combinations of these networks are evaluated and compared across three benchmark data sets of images representing diverse problems and collected by instruments that capture information at different scales: a virus data set, a bark data set, and a LIGO glitches data set. Experiments demonstrate the superiority of this approach. The best ensemble proposed in this work achieves state-of-the-art performance across all three data sets. This result shows that varying data augmentation is a feasible way for building an ensemble of classifiers for image classification (code available at https://github.com/LorisNanni).


2015 ◽  
Vol 24 (04) ◽  
pp. 1540016 ◽  
Author(s):  
Muhammad Hussain ◽  
Sahar Qasem ◽  
George Bebis ◽  
Ghulam Muhammad ◽  
Hatim Aboalsamh ◽  
...  

Due to the maturing of digital image processing techniques, there are many tools that can forge an image easily without leaving visible traces and lead to the problem of the authentication of digital images. Based on the assumption that forgery alters the texture micro-patterns in a digital image and texture descriptors can be used for modeling this change; we employed two stat-of-the-art local texture descriptors: multi-scale Weber's law descriptor (multi-WLD) and multi-scale local binary pattern (multi-LBP) for splicing and copy-move forgery detection. As the tamper traces are not visible to open eyes, so the chrominance components of an image encode these traces and were used for modeling tamper traces with the texture descriptors. To reduce the dimension of the feature space and get rid of redundant features, we employed locally learning based (LLB) algorithm. For identifying an image as authentic or tampered, Support vector machine (SVM) was used. This paper presents the thorough investigation for the validation of this forgery detection method. The experiments were conducted on three benchmark image data sets, namely, CASIA v1.0, CASIA v2.0, and Columbia color. The experimental results showed that the accuracy rate of multi-WLD based method was 94.19% on CASIA v1.0, 96.52% on CASIA v2.0, and 94.17% on Columbia data set. It is not only significantly better than multi-LBP based method, but also it outperforms other stat-of-the-art similar forgery detection methods.


2021 ◽  
Vol 7 (9) ◽  
pp. 177
Author(s):  
Loris Nanni ◽  
Stefano Ghidoni ◽  
Sheryl Brahnam

Features play a crucial role in computer vision. Initially designed to detect salient elements by means of handcrafted algorithms, features now are often learned using different layers in convolutional neural networks (CNNs). This paper develops a generic computer vision system based on features extracted from trained CNNs. Multiple learned features are combined into a single structure to work on different image classification tasks. The proposed system was derived by testing several approaches for extracting features from the inner layers of CNNs and using them as inputs to support vector machines that are then combined by sum rule. Several dimensionality reduction techniques were tested for reducing the high dimensionality of the inner layers so that they can work with SVMs. The empirically derived generic vision system based on applying a discrete cosine transform (DCT) separately to each channel is shown to significantly boost the performance of standard CNNs across a large and diverse collection of image data sets. In addition, an ensemble of different topologies taking the same DCT approach and combined with global mean thresholding pooling obtained state-of-the-art results on a benchmark image virus data set.


Sensors ◽  
2021 ◽  
Vol 21 (5) ◽  
pp. 1573
Author(s):  
Loris Nanni ◽  
Giovanni Minchio ◽  
Sheryl Brahnam ◽  
Gianluca Maguolo ◽  
Alessandra Lumini

Traditionally, classifiers are trained to predict patterns within a feature space. The image classification system presented here trains classifiers to predict patterns within a vector space by combining the dissimilarity spaces generated by a large set of Siamese Neural Networks (SNNs). A set of centroids from the patterns in the training data sets is calculated with supervised k-means clustering. The centroids are used to generate the dissimilarity space via the Siamese networks. The vector space descriptors are extracted by projecting patterns onto the similarity spaces, and SVMs classify an image by its dissimilarity vector. The versatility of the proposed approach in image classification is demonstrated by evaluating the system on different types of images across two domains: two medical data sets and two animal audio data sets with vocalizations represented as images (spectrograms). Results show that the proposed system’s performance competes competitively against the best-performing methods in the literature, obtaining state-of-the-art performance on one of the medical data sets, and does so without ad-hoc optimization of the clustering methods on the tested data sets.


Solid Earth ◽  
2016 ◽  
Vol 7 (2) ◽  
pp. 481-492 ◽  
Author(s):  
Faisal Khan ◽  
Frieder Enzmann ◽  
Michael Kersten

Abstract. Image processing of X-ray-computed polychromatic cone-beam micro-tomography (μXCT) data of geological samples mainly involves artefact reduction and phase segmentation. For the former, the main beam-hardening (BH) artefact is removed by applying a best-fit quadratic surface algorithm to a given image data set (reconstructed slice), which minimizes the BH offsets of the attenuation data points from that surface. A Matlab code for this approach is provided in the Appendix. The final BH-corrected image is extracted from the residual data or from the difference between the surface elevation values and the original grey-scale values. For the segmentation, we propose a novel least-squares support vector machine (LS-SVM, an algorithm for pixel-based multi-phase classification) approach. A receiver operating characteristic (ROC) analysis was performed on BH-corrected and uncorrected samples to show that BH correction is in fact an important prerequisite for accurate multi-phase classification. The combination of the two approaches was thus used to classify successfully three different more or less complex multi-phase rock core samples.


2003 ◽  
Vol 21 (1) ◽  
pp. 123-135 ◽  
Author(s):  
S. Vignudelli ◽  
P. Cipollini ◽  
F. Reseghetti ◽  
G. Fusco ◽  
G. P. Gasparini ◽  
...  

Abstract. From September 1999 to December 2000, eXpendable Bathy-Thermograph (XBT) profiles were collected along the Genova-Palermo shipping route in the framework of the Mediterranean Forecasting System Pilot Project (MFSPP). The route is virtually coincident with track 0044 of the TOPEX/Poseidon satellite altimeter, crossing the Ligurian and Tyrrhenian basins in an approximate N–S direction. This allows a direct comparison between XBT and altimetry, whose findings are presented in this paper. XBT sections reveal the presence of the major features of the regional circulation, namely the eastern boundary of the Ligurian gyre, the Bonifacio gyre and the Modified Atlantic Water inflow along the Sicily coast. Twenty-two comparisons of steric heights derived from the XBT data set with concurrent realizations of single-pass altimetric heights are made. The overall correlation is around 0.55 with an RMS difference of less than 3 cm. In the Tyrrhenian Sea the spectra are remarkably similar in shape, but in general the altimetric heights contain more energy. This difference is explained in terms of oceanographic signals, which are captured with a different intensity by the satellite altimeter and XBTs, as well as computational errors. On scales larger than 100 km, the data sets are also significantly coherent, with increasing coherence values at longer wavelengths. The XBTs were dropped every 18–20 km along the track: as a consequence, the spacing scale was unable to resolve adequately the internal radius of deformation (< 20 km). Furthermore, few XBT drops were carried out in the Ligurian Sea, due to the limited north-south extent of this basin, so the comparison is problematic there. On the contrary, the major features observed in the XBT data in the Tyrrhenian Sea are also detected by TOPEX/Poseidon. The manuscript is completed by a discussion on how to integrate the two data sets, in order to extract additional information. In particular, the results emphasize their complementariety in providing a dynamically complete description of the observed structures. Key words. Oceanography: general (descriptive and regional oceanography) Oceanography: physical (sea level variations; instruments and techniques)


2020 ◽  
Author(s):  
Harith Al-Sahaf ◽  
Mengjie Zhang ◽  
M Johnston

In machine learning, it is common to require a large number of instances to train a model for classification. In many cases, it is hard or expensive to acquire a large number of instances. In this paper, we propose a novel genetic programming (GP) based method to the problem of automatic image classification via adopting a one-shot learning approach. The proposed method relies on the combination of GP and Local Binary Patterns (LBP) techniques to detect a predefined number of informative regions that aim at maximising the between-class scatter and minimising the within-class scatter. Moreover, the proposed method uses only two instances of each class to evolve a classifier. To test the effectiveness of the proposed method, four different texture data sets are used and the performance is compared against two other GP-based methods namely Conventional GP and Two-tier GP. The experiments revealed that the proposed method outperforms these two methods on all the data sets. Moreover, a better performance has been achieved by Naïve Bayes, Support Vector Machine, and Decision Trees (J48) methods when extracted features by the proposed method have been used compared to the use of domain-specific and Two-tier GP extracted features. © Springer International Publishing 2013.


2020 ◽  
Author(s):  
Ying Bi ◽  
Bing Xue ◽  
Mengjie Zhang

© Springer International Publishing AG, part of Springer Nature 2018. Feature extraction is an essential process for image data dimensionality reduction and classification. However, feature extraction is very difficult and often requires human intervention. Genetic Programming (GP) can achieve automatic feature extraction and image classification but the majority of existing methods extract low-level features from raw images without any image-related operations. Furthermore, the work on the combination of image-related operators/descriptors in GP for feature extraction and image classification is limited. This paper proposes a multi-layer GP approach (MLGP) to performing automatic high-level feature extraction and classification. A new program structure, a new function set including a number of image operators/descriptors and two region detectors, and a new terminal set are designed in this approach. The performance of the proposed method is examined on six different data sets of varying difficulty and compared with five GP based methods and 42 traditional image classification methods. Experimental results show that the proposed method achieves better or comparable performance than these baseline methods. Further analysis on the example programs evolved by the proposed MLGP method reveals the good interpretability of MLGP and gives insight into how this method can effectively extract high-level features for image classification.


Sign in / Sign up

Export Citation Format

Share Document