scholarly journals Exploring Quantitative Metagenomics Studies Using Oxford Nanopore Sequencing: A Computational and Experimental Protocol

Author(s):  
Rohia Alili ◽  
Eugeni Belda ◽  
Phuong Le ◽  
Thierry Wirth ◽  
Jean-Daniel Zucker ◽  
...  

Background: The gut microbiome plays a major role in chronic diseases, of which several are characterized by an altered composition and diversity of bacterial communities. Large-scale sequencing projects allowed characterizing the perturbations of these communities. However, translating these discoveries into clinical applications remains a challenges. To facilitate routine implementation of microbiome profiling in clinical settings, portable, real-time, and low-cost sequencing technologies are needed. Results: Here, we propose a computational and experimental protocol for whole genome quantitative metagenomics studies of human gut microbiome with Oxford Nanopore sequencing technology (ONT) that could be applied to other microbial ecosystems. We developed a bioinformatic protocol to analyse ONT sequences taxonomically and functionally and optimized pre-analytic protocols including stool collection and DNA extraction methods to maximize read length. This is a critical parameter for the sequence alignment and classification. Our protocol was evaluated using simulations of metagenomic communities which reflect naturally occuring compositional variations. Next, we validated both protocols using stool samples from a bariatric surgery cohort, sequenced with ONT, Illumina and SOLiD technologies. Results revealed similar diversity and microbial composition profiles. Conclusion: This protocol can be implemented in the clinical or research setting, bringing rapid personalized whole genome profiling of target microbiome species.

Genes ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1496
Author(s):  
Rohia Alili ◽  
Eugeni Belda ◽  
Phuong Le ◽  
Thierry Wirth ◽  
Jean-Daniel Zucker ◽  
...  

The gut microbiome plays a major role in chronic diseases, of which several are characterized by an altered composition and diversity of bacterial communities. Large-scale sequencing projects allowed for characterizing the perturbations of these communities. However, translating these discoveries into clinical applications remains a challenge. To facilitate routine implementation of microbiome profiling in clinical settings, portable, real-time, and low-cost sequencing technologies are needed. Here, we propose a computational and experimental protocol for whole-genome semi-quantitative metagenomic studies of human gut microbiome with Oxford Nanopore sequencing technology (ONT) that could be applied to other microbial ecosystems. We developed a bioinformatics protocol to analyze ONT sequences taxonomically and functionally and optimized preanalytic protocols, including stool collection and DNA extraction methods to maximize read length. This is a critical parameter for the sequence alignment and classification. Our protocol was evaluated using simulations of metagenomic communities, which reflect naturally occurring compositional variations. Next, we validated both protocols using stool samples from a bariatric surgery cohort, sequenced with ONT, Illumina, and SOLiD technologies. Results revealed similar diversity and microbial composition profiles. This protocol can be implemented in a clinical or research setting, bringing rapid personalized whole-genome profiling of target microbiome species.


2020 ◽  
Author(s):  
Rohia ALILI ◽  
Eugeni BELDA ◽  
Karine CLEMENT ◽  
Phuong Le ◽  
Edi PRIFTI ◽  
...  

Abstract Background: The gut microbiome plays a major role in chronic diseases, several of which are characterized by an altered diversity and composition of bacterial communities. Large-scale sequencing projects allowed the characterization of these microbial community perturbations. However, a gap remains in how these discoveries can be translated into clinical applications. To facilitate routine implementation of microbiome profiling in clinical settings, portable, real-time, and low-cost sequencing technologies are needed.Results: Here, we propose a computational and experimental protocol for whole genome quantitative metagenomics studies of the human gut microbiome with Oxford Nanopore sequencing technology (ONT). We developed a bioinformatic pipeline to process ONT sequences based on the evaluation of different alignment parameters in the estimation of microbial diversity and composition. We also optimized stool collection and DNA extraction methods to maximize read length, a critical parameter for the sequence alignment and classification. Our analytical pipeline was evaluated using simulations of metagenomic communities to reflect naturally occuring compositional variations. We then validated our experimental and analytical pipeline with stool samples from a bariatric surgery cohort sequenced with ONT and Illumina, revealing comparable diversity and microbial composition profiles. These results were compared to those previously obtained with SOLiD sequencing, where differences were observed, possibly explained by variations in library preparation steps. Finally, we found that sequences obtained with ONT allowed assembly of complete genomes for disease-related species.Conclusion: This protocol can be implemented in the clinical or individual setting, bringing rapid personalized whole genome profiling of target microbiome species. Keywords: quantitative metagenomics, microbiome, obesity, gut microbiota, microbial DNA extraction, sequencing, Simulation, Oxford Nanopore Technologies, MinION.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Trent M. Prall ◽  
Emma K. Neumann ◽  
Julie A. Karl ◽  
Cecilia G. Shortreed ◽  
David A. Baker ◽  
...  

Abstract Background Oxford Nanopore Technologies’ instruments can sequence reads of great length. Long reads improve sequence assemblies by unambiguously spanning repetitive elements of the genome. Sequencing reads of significant length requires the preservation of long DNA template molecules through library preparation by pipetting reagents as slowly as possible to minimize shearing. This process is time-consuming and inconsistent at preserving read length as even small changes in volumetric flow rate can result in template shearing. Results We have designed SNAILS (Slow Nucleic Acid Instrument for Long Sequences), a 3D-printable instrument that automates slow pipetting of reagents used in long read library preparation for Oxford Nanopore sequencing. Across six sequencing libraries, SNAILS preserved more reads exceeding 100 kilobases in length and increased its libraries’ average read length over manual slow pipetting. Conclusions SNAILS is a low-cost, easily deployable solution for improving sequencing projects that require reads of significant length. By automating the slow pipetting of library preparation reagents, SNAILS increases the consistency and throughput of long read Nanopore sequencing.


2020 ◽  
Author(s):  
Trent M. Prall ◽  
Emma K. Neumann ◽  
Julie A. Karl ◽  
Cecilia G. Shortreed ◽  
David A. Baker ◽  
...  

AbstractBackgroundOxford Nanopore Technologies’ instruments can sequence reads of great length. Long reads improve sequence assemblies by unambiguously spanning repetitive elements of the genome. Sequencing reads of significant length requires the preservation of long DNA template molecules through library preparation by pipetting reagents as slowly as possible in order to minimizing shearing. This process is time consuming and inconsistent at preserving read length as even small changes in volumetric flow rate can result in template shearing.ResultsWe have designed SNAILS (Slow Nucleic Acid Instrument for Long Sequences), a 3D-printable instrument that automates slow pipetting of reagents used in long read library preparation for Oxford Nanopore sequencing. Across six sequencing libraries, SNAILS preserved more reads exceeding one hundred kilobases in length and increased the average read length of its libraries over manual slow pipetting.ConclusionsSNAILS is a low-cost, easily deployable solution for improving sequencing projects that require reads of significant length. By automating the slow pipetting of library preparation reagents, SNAILS both increases the consistency and throughput of long read Nanopore sequencing.


Pathogens ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 463
Author(s):  
Mariusz Sikora ◽  
Albert Stec ◽  
Magdalena Chrabaszcz ◽  
Aleksandra Knot ◽  
Anna Waskiel-Burnat ◽  
...  

(1) Background: A growing body of evidence highlights that intestinal dysbiosis is associated with the development of psoriasis. The gut–skin axis is the novel concept of the interaction between skin diseases and microbiome through inflammatory mediators, metabolites and the intestinal barrier. The objective of this study was to synthesize current data on the gut microbial composition in psoriasis. (2) Methods: We conducted a systematic review of studies investigating intestinal microbiome in psoriasis, using the PRISMA checklist. We searched MEDLINE, EMBASE, and Web of Science databases for relevant published articles (2000–2020). (3) Results: All of the 10 retrieved studies reported alterations in the gut microbiome in patients with psoriasis. Eight studies assessed alpha- and beta-diversity. Four of them reported a lack of change in alpha-diversity, but all confirmed significant changes in beta-diversity. At the phylum-level, at least two or more studies reported a lower relative abundance of Bacteroidetes, and higher Firmicutes in psoriasis patients versus healthy controls. (4) Conclusions: There is a significant association between alterations in gut microbial composition and psoriasis; however, there is high heterogeneity between studies. More unified methodological standards in large-scale studies are needed to understand microbiota’s contribution to psoriasis pathogenesis and its modulation as a potential therapeutic strategy.


2017 ◽  
Author(s):  
Tslil Gabrieli ◽  
Hila Sharim ◽  
Yael Michaeli ◽  
Yuval Ebenstein

ABSTRACTVariations in the genetic code, from single point mutations to large structural or copy number alterations, influence susceptibility, onset, and progression of genetic diseases and tumor transformation. Next-generation sequencing analysis is unable to reliably capture aberrations larger than the typical sequencing read length of several hundred bases. Long-read, single-molecule sequencing methods such as SMRT and nanopore sequencing can address larger variations, but require costly whole genome analysis. Here we describe a method for isolation and enrichment of a large genomic region of interest for targeted analysis based on Cas9 excision of two sites flanking the target region and isolation of the excised DNA segment by pulsed field gel electrophoresis. The isolated target remains intact and is ideally suited for optical genome mapping and long-read sequencing at high coverage. In addition, analysis is performed directly on native genomic DNA that retains genetic and epigenetic composition without amplification bias. This method enables detection of mutations and structural variants as well as detailed analysis by generation of hybrid scaffolds composed of optical maps and sequencing data at a fraction of the cost of whole genome sequencing.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 1847-1847 ◽  
Author(s):  
Adam Burns ◽  
David Robert Bruce ◽  
Pauline Robbe ◽  
Adele Timbs ◽  
Basile Stamatopoulos ◽  
...  

Abstract Introduction Chronic Lymphocytic Leukaemia (CLL) is the most prevalent leukaemia in the Western world and characterised by clinical heterogeneity. IgHV mutation status, mutations in the TP53 gene and deletions of the p-arm of chromosome 17 are currently used to predict an individual patient's response to therapy and give an indication as to their long-term prognosis. Current clinical guidelines recommend screening patients prior to initial, and any subsequent, treatment. Routine clinical laboratory practices for CLL involve three separate assays, each of which are time-consuming and require significant investment in equipment. Nanopore sequencing offers a rapid, low-cost alternative, generating a full prognostic dataset on a single platform. In addition, Nanopore sequencing also promises low failure rates on degraded material such as FFPE and excellent detection of structural variants due to long read length of sequencing. Importantly, Nanopore technology does not require expensive equipment, is low-maintenance and ideal for patient-near testing, making it an attractive DNA sequencing device for low-to-middle-income countries. Methods Eleven untreated CLL samples were selected for the analysis, harbouring both mutated (n=5) and unmutated (n=6) IgHV genes, seven TP53 mutations (five missense, one stop gain and one frameshift) and two del(17p) events. Primers were designed to amplify all exons of TP53, along with the IgHV locus, and each primer included universal tails for individual sample barcoding. The resulting PCR amplicons were prepared for sequencing using a ligation sequencing kit (SQK-LSK108, Oxford Nanopore Technologies, Oxford, UK). All IgHV libraries were pooled and sequenced on one R9.4 flowcell, with the TP53 libraries pooled and sequenced on a second R9.4 flowcell. Whole genome libraries were prepared from 400ng genomic DNA for each sample using a rapid sequencing kit (SQK-RAD004, Oxford Nanopore Technologies, Oxford, UK), and each sample sequenced on individual flowcells on a MinION mk1b instrument (Oxford Nanopore Technologies, Oxford, UK). We developed a bespoke bioinformatics pipeline to detect copy-number changes, TP53 mutations and IgHV mutation status from the Nanopore sequencing data. Results were compared to short-read sequencing data obtained earlier by targeted deep sequencing (MiSeq, Illumina Inc, San Diego, CA, USA) and whole genome sequencing (HiSeq 2500, Illumina Inc, San Diego CA, USA). Results Following basecalling and adaptor trimming, the raw data were submitted to the IMGT database. In the absence of error correction, it was possible to identify the correct VH family for each sample; however the germline homology was not sufficient to differentiate between IgHVmut and IgHVunmut CLL cases. Following bio-informatic error correction and consensus building, the percentage to germline homology was the same as that obtained from short-read sequencing and nanopore sequencing also called the same productive rearrangements in all cases. A total of 77 TP53 variants were identified, including 68 in non-coding regions, and three synonymous SNVs. The remaining 6 were predicted to be functional variants (eight missense and two stop-gains) and had all been identified in early MiSeq targeted sequencing. However, the frameshift mutation was not called by the analysis pipeline, although it is present in the aligned reads. Using the low-coverage WGS data, we were able to identify del(17p) events, of 19Mb and 20Mb length, in both patients with high confidence. Conclusions Here we demonstrate that characterization of the IgHV locus in CLL cases is possible using the MinION platform, provided sufficient downstream analysis, including error correction, is applied. Furthermore, somatic SNVs in TP53 can be identified, although similar to second generation sequencing, variant calling of small insertions and deletions is more problematic. Identification of del(17p) is possible from low-coverage WGS on the MinION and is inexpensive. Our data demonstrates that Nanopore sequencing can be a viable, patient-near, low-cost alternative to established screening methods, with the potential of diagnostic implementation in resource-poor regions of the world. Disclosures Schuh: Giles, Roche, Janssen, AbbVie: Honoraria.


Nutrients ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 4
Author(s):  
Lara Hart ◽  
Charlotte M. Verburgt ◽  
Eytan Wine ◽  
Mary Zachos ◽  
Alisha Poppen ◽  
...  

Inflammatory bowel disease (IBD) is a chronic, autoimmune disorder of the gastrointestinal tract with numerous genetic and environmental risk factors. Patients with Crohn’s disease (CD) or ulcerative colitis (UC) often demonstrate marked disruptions of their gut microbiome. The intestinal microbiota is strongly influenced by diet. The association between the increasing incidence of IBD worldwide and increased consumption of a westernized diet suggests host nutrition may influence the progression or treatment of IBD via the microbiome. Several nutritional therapies have been studied for the treatment of CD and UC. While their mechanisms of action are only partially understood, existing studies do suggest that diet-driven changes in microbial composition and function underlie the diverse mechanisms of nutritional therapy. Despite existing therapies for IBD focusing heavily on immune suppression, nutrition is an important treatment option due to its superior safety profile, potentially low cost, and benefits for growth and development. These benefits are increasingly important to patients. In this review, we will describe the clinical efficacy of the different nutritional therapies that have been described for the treatment of CD and UC. We will also describe the effects of each nutritional therapy on the gut microbiome and summarize the strength of the literature with recommendations for the practicing clinician.


2021 ◽  
Author(s):  
James M. Ferguson ◽  
Hasindu Gamaarachchi ◽  
Thanh Nguyen ◽  
Alyne Gollon ◽  
Stephanie Tong ◽  
...  

1.ABSTRACTMotivationInterARTIC is an interactive web application for the analysis of viral whole-genome sequencing (WGS) data generated on Oxford Nanopore Technologies (ONT) devices. A graphical interface enables users with no bioinformatics expertise to analyse WGS experiments and reconstruct consensus genome sequences from individual isolates of viruses, such as SARS-CoV-2. InterARTIC is intended to facilitate widespread adoption and standardisation of ONT sequencing for viral surveillance and molecular epidemiology.Worked exampleWe demonstrate the use of InterARTIC for the analysis of ONT viral WGS data from SARS-CoV-2 and Ebola virus, using a laptop computer or the internal computer on an ONT GridlON sequencing device. We showcase the intuitive graphical interface, workflow customization capabilities and job-scheduling system that facilitate execution of small- and large-scale WGS projects on any virus.Implementation & availabilityInterARTIC is a free, open-source web application implemented in Python. The application can be downloaded as a set of pre-compiled binaries that are compatible with all common Ubuntu distributions or built from source. For further details please visit: https://github.com/Psy-Fer/interARTIC/.


2017 ◽  
Vol 2 ◽  
pp. 23 ◽  
Author(s):  
Jean-Michel Carter ◽  
Shobbir Hussain

Background: The ability to obtain long read lengths during DNA sequencing has several potentially important practical applications. Especially long read lengths have been reported using the Nanopore sequencing method, currently commercially available from Oxford Nanopore Technologies (ONT). However, early reports have demonstrated only limited levels of combined throughput and sequence accuracy. Recently, ONT released a new CsgG pore sequencing system as well as a 250b/s translocation chemistry with potential for improvements. Methods: We made use of such components on ONTs miniature ‘MinION’ device and sequenced native genomic DNA obtained from the near haploid cancer cell line HAP1. Analysis of our data was performed utilising recently described computational tools tailored for nanopore/long-read sequencing outputs, and here we present our key findings. Results: From a single sequencing run, we obtained ~240,000 high-quality mapped reads, comprising a total of ~2.3 billion bases. A mean read length of 9.6kb and an N50 of ~17kb was achieved, while sequences mapped to reference with a mean identity of 85%. Notably, we obtained ~68X coverage of the mitochondrial genome and were able to achieve a mean consensus identity of 99.8% for sequenced mtDNA reads. Conclusions: With improved sequencing chemistries already released and higher-throughput instruments in the pipeline, this early study suggests that ONT CsgG-based sequencing may be a useful option for potential practical long-read applications.


Sign in / Sign up

Export Citation Format

Share Document