scholarly journals Adaptive Integral Sliding Mode based Path Following Control of Unmanned Surface Vehicle

Author(s):  
José Antonio González-Prieto ◽  
Carlos Pérez-Collazo ◽  
Yogang Singh

This paper investigates the path following control problem for a unmanned surface vehicle (USV) in the presence of unknown disturbances and system uncertainties. The simulation study combines two different types of sliding mode surface based control approaches due to its precise tracking and robustness against disturbances and uncertainty. Firstly, an adaptive linear sliding mode surface algorithm is applied, to keep the yaw error within the desired boundaries and then an adaptive integral non-linear sliding mode surface is explored to keep an account of the sliding mode condition. Additionally, a method to reconfigure the input parameters in order to keep settling time, yaw rate restriction and desired precision within boundary conditions is presented. The main strengths of proposed approach is simplicity, robustness with respect to external disturbances and high adaptability to static and dynamics reference courses without the need of parameter reconfiguration.

2022 ◽  
Vol 10 (1) ◽  
pp. 68
Author(s):  
José Antonio González-Prieto ◽  
Carlos Pérez-Collazo ◽  
Yogang Singh

This paper investigates the course keeping control problem for an unmanned surface vehicle (USV) in the presence of unknown disturbances and system uncertainties. The simulation study combines two different types of sliding mode surface based control approaches due to its precise tracking and robustness against disturbances and uncertainty. Firstly, an adaptive linear sliding mode surface algorithm is applied, to keep the yaw error within the desired boundaries and then an adaptive integral non-linear sliding mode surface is explored to keep an account of the sliding mode condition. Additionally, a method to reconfigure the input parameters in order to keep settling time, yaw rate restriction and desired precision within boundary conditions is presented. The main strengths of proposed approach is simplicity, robustness with respect to external disturbances and high adaptability to static and dynamics reference courses without the need of parameter reconfiguration.


Sensors ◽  
2021 ◽  
Vol 21 (22) ◽  
pp. 7454
Author(s):  
Yunsheng Fan ◽  
Bowen Liu ◽  
Guofeng Wang ◽  
Dongdong Mu

This paper focuses on an issue involving robust adaptive path following for the uncertain underactuated unmanned surface vehicle with time-varying large sideslips angle and actuator saturation. An improved line-of-sight guidance law based on a reduced-order extended state observer is proposed to address the large sideslip angle that occurs in practical navigation. Next, the finite-time disturbances observer is designed by considering the perturbations parameter of the model and the unknown disturbances of the external environment as the lumped disturbances. Then, an adaptive term is introduced into Fast Non-singular Terminal Sliding Mode Control to design the path following controllers. Finally, considering the saturation of actuator, an auxiliary dynamic system is introduced. By selecting the appropriate design parameters, all the signals of the whole path following a closed-loop system can be ultimately bounded. Real-time control of path following can be achieved by transferring data from shipborne sensors such as GPS, combined inertial guidance and anemoclinograph to the Fast Non-singular Terminal Sliding Mode controller. Two examples as comparisons were carried out to demonstrate the validity of the proposed control approach.


2019 ◽  
Vol 2019 ◽  
pp. 1-16 ◽  
Author(s):  
Mingyu Fu ◽  
Taiqi Wang ◽  
Chenglong Wang

This paper considers the problem of constrained path following control for an underactuated hovercraft subject to parametric uncertainties and external disturbances. A four-degree-of-freedom hovercraft model with unknown curve-fitted coefficients is first rewritten into a parameterized form. By introducing a barrier Lyapunov function into the line-of-sight guidance, the specific transient tracking performance in terms of position error is guaranteed. A novel constrained yaw rate controller is proposed to ensure time-varying yaw rate constraint satisfaction, in which the yaw rate barrier is required to vary with the speed of the hovercraft. Moreover, a command filter is incorporated into the control design to generate the desired virtual controls and its time derivatives. Theoretical analyses show that, under the proposed controller, the position tracking error constraints and the yaw rate constraint can be strictly guaranteed. Finally, numerical simulations illustrate the effectiveness and advantages of the proposed control scheme.


2017 ◽  
Vol 40 (12) ◽  
pp. 3477-3488 ◽  
Author(s):  
Chuan Hu ◽  
Rongrong Wang ◽  
Fengjun Yan ◽  
Mohammed Chadli ◽  
Yanjun Huang ◽  
...  

This paper presents a fast and accurate robust path-following control approach for a fully actuated marine surface vessel in the presence of external disturbances. The path following is realized by simultaneously converging the yaw rate and sway velocity to their respective desired values, which are generated according to the path-following demand. An improved combined control strategy using an integral terminal sliding mode (ITSM) based composite nonlinear feedback (CNF) technique considering the external disturbances, time-varying tracking reference, input saturations and transient performance improvement is proposed in this study. The proposed ITSM-CNF combines the advantages of the CNF control in improving the transient performance and of the ITSM control in guaranteeing good robustness and finite-time convergence. A continuous and smooth sliding mode controller, based on an integral nonsingular terminal sliding surface, is added to the CNF controller to eliminate chattering. The overall stability of the closed-loop system is strictly proved based on the Lyapunov method. Simulations verify the effectiveness of the ITSM-CNF controller in improving the transient path-following performance, inhibiting overshoots, eliminating steady-state errors, rejecting external disturbances and removing chattering effects, considering input saturations, varying path curvature and finite-time convergence.


2019 ◽  
Vol 141 (12) ◽  
Author(s):  
Jawhar Ghommam ◽  
Lamia Iftekhar ◽  
Maarouf Saad

Abstract This paper considers the finite time path-following control problem for an underactuated surface vessel subject to parametric uncertainties, unknown disturbances, and involving input-control saturation. A finite time command filtered backstepping approach is adopted as the main control framework along with the first-order sliding mode differentiator introduced to compute the derivatives of virtual control laws, and the analytical computational burden in the backstepping control is reduced for the design of the control for the underactuated surface vessel. A rigorous proof of the finite time stability of the closed-loop system is derived by utilizing the Lyapunov method. Furthermore, in order to avoid obstacles, a local path replanning technique is designed based on a repulsive potential function that acts directly on the original desired path. The effectiveness of the proposed strategy is validated through numerical simulations.


2019 ◽  
Vol 9 (6) ◽  
pp. 1102 ◽  
Author(s):  
Jianqin Wang ◽  
Zaojian Zou ◽  
Tao Wang

This paper studied the path following problem for an underactuated vessel sailing in restricted waters with varying water depths. A novel high-gain extended state observer based adaptive sliding mode path following control scheme was proposed. The high-gain extended state observer based line-of-sight guidance law was designed according to vessel kinematics in the horizontal plane, which achieved accurate guidance in spite of time-varying sideslip angles. In the guidance system, a guidance angle was calculated to serve as a reference input for the yaw tracking control system. The sliding mode yaw tracking control system was designed, which can deal with model uncertainties and external disturbances. Since it is hard to obtain the exact model parameters in advance, an adaptive technique was adopted to estimate the unknown parameters, and an adaptive sliding mode control was designed to make the yaw tracking errors globally and asymptotically converge to zero in spite of unknown model parameters, model uncertainties, and external disturbances. Furthermore, the global uniformly asymptotically stability of the closed-loop system was proven based on the cascade system theory. Lastly, simulation experiments were conducted to validate the analysis results and to demonstrate the superiority of the proposed scheme.


2018 ◽  
Vol 151 ◽  
pp. 82-92 ◽  
Author(s):  
Guo-cheng Zhang ◽  
Hai Huang ◽  
Hong-de Qin ◽  
Lei Wan ◽  
Yue-ming Li ◽  
...  

Author(s):  
Yixiao Liang ◽  
Yinong Li ◽  
Ling Zheng ◽  
Yinghong Yu ◽  
Yue Ren

The path-following problem for four-wheel independent driving and four-wheel independent steering electric autonomous vehicles is investigated in this paper. Owing to the over-actuated characters of four-wheel independent driving and four-wheel independent steering autonomous vehicles, a novel yaw rate tracking-based path-following controller is proposed. First, according to the kinematic relationships between vehicle and the reference path, the yaw rate generator is designed by linear matrix inequality theory, with the ability to minimize the disturbances caused by vehicle side slip and varying curvature of path. Considering that the path-following objective and dynamics stability are in conflict with each other in some extreme path-following conditions, a coordinating mechanism based on yaw rate prediction is proposed to satisfy the two conflicting objectives. Then, according to the desired yaw rate and longitudinal velocity, a hierarchical structure is introduced for motion control. The upper-level controller calculates the generalized tracking forces while the allocation layer optimally distributes the generalized forces to tires considering tire vertical load and adhesive utilization. Finally, simulation results indicate that the proposed method can achieve excellent path-following performances in different driving conditions, while both path-following objective and dynamics stability can be satisfied.


2020 ◽  
Vol 10 (18) ◽  
pp. 6447
Author(s):  
Mingyu Fu ◽  
Lulu Wang

This paper develops a finite-time path following control scheme for an underactuated marine surface vessel (MSV) with external disturbances, model parametric uncertainties, position constraint and input saturation. Initially, based on the time-varying barrier Lyapunov function (BLF), the finite-time line-of-sight (FT-LOS) guidance law is proposed to obtain the desired yaw angle and simultaneously constrain the position error of the underactuated MSV. Furthermore, the finite-time path following constraint controllers are designed to achieve tracking control in finite time. Additionally, considering the model parametric uncertainties and external disturbances, the finite-time disturbance observers are proposed to estimate the compound disturbance. For the sake of avoiding the input saturation and satisfying the requirements of finite-time convergence, the finite-time input saturation compensators were designed. The stability analysis shows that the proposed finite-time path following control scheme can strictly guarantee the constraint requirements of the position, and all error signals of the whole control system can converge into a small neighborhood around zero in finite time. Finally, comparative simulation results show the effectiveness and superiority of the proposed finite-time path following control scheme.


Sign in / Sign up

Export Citation Format

Share Document