scholarly journals Mathematical Description of the Increase in Selectivity of an Anion-Exchange Membrane due to Its Modification with a Perfluorosulfonated Ionomer

Author(s):  
Anton Kozmai ◽  
Natalia Pismenskaya ◽  
Victor Nikonenko

Ion-exchange membranes (IEMs) are widely used in desalination, waste water treatment, food, energy production and other applications. There is a strong demand for cost-effective IEMs characterized by high selective transport of ions of a certain sign of charge. In this paper, we simulate the experimental results of V. Sarapulova et al. (IJMS 2021) on the modification of an inexpensive anion-exchange membrane (CJMA-7, Hefei Chemjoy Polymer Materials Co. Ltd., China) with a perfluorosulfonated ionomer (PFSI). The modification was made in several stages including keeping the membrane at a low temperature, applying a PFSI solution on its surface, and subsequent drying it at an elevated temperature. We apply the known microheterogeneous model with some new amendments to simulate each stage of the membrane modification. It has been shown that the PFSI film formed on the membrane-substrate does not affect significantly its properties due to the small thickness of the film (4 m) and similar properties of the film and substrate. The main effect is caused by the fact that PFSI material “clogs” the macropores of the CJMA-7 membrane, thereby blocking the transport of coions through the membrane. In this case, the membrane microporous gel phase, which has a high selectivity to counterions, remains the primary pathway for both counterions and coions. Due to the above modification of the CJMA-7 membrane, the coion (Na+) transport number in the membrane equilibrated with 1 M NaCl solution decreased from 0.11 to 0.03. Thus, the modified membrane becomes comparable in its transport characteristics with more expensive IEMs available on the market.

RSC Advances ◽  
2020 ◽  
Vol 10 (61) ◽  
pp. 37429-37438
Author(s):  
Immanuel Vincent ◽  
Eun-Chong Lee ◽  
Hyung-Man Kim

Anion exchange membrane (AEM) electrolysis eradicates platinum group metal electrocatalysts and diaphragms and is used in conventional proton exchange membrane (PEM) electrolysis and alkaline electrolysis.


2000 ◽  
Vol 49 (4) ◽  
pp. 211-218
Author(s):  
F. Elhannouni ◽  
M. Belhadj ◽  
M. Taky ◽  
A. El Midaoui ◽  
L. Echihabi ◽  
...  

Author(s):  
Dongguo Li ◽  
Andrew R Motz ◽  
Chulsung Bae ◽  
Cy Fujimoto ◽  
Gaoqiang Yang ◽  
...  

Interest in the low-cost production of clean hydrogen is growing. Anion exchange membrane water electrolyzers (AEMWEs) are considered one of the most promising sustainable hydrogen production technologies because of their...


Processes ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 718
Author(s):  
Van Men Truong ◽  
Ngoc Bich Duong ◽  
Hsiharng Yang

Gas diffusion layers (GDLs) play a critical role in anion exchange membrane fuel cell (AEMFC) water management. In this work, the effect of GDL thickness on the cell performance of the AEMFC was experimentally investigated. Three GDLs with different thicknesses of 120, 260, and 310 µm (denoted as GDL-120, GDL-260, and GDL-310, respectively) were prepared and tested in a single H2/O2 AEMFC. The experimental results showed that the GDL-260 employed in both anode and cathode electrodes exhibited the best cell performance. There was a small difference in cell performance for GDL-260 and GDL-310, while water flooding was observed in the case of using GDL-120 operated at current densities greater than 1100 mA cm−2. In addition, it was found that the GDL thickness had more sensitivity to the AEMFC performance as used in the anode electrode rather than in the cathode electrode, indicating that water removal at the anode was more challenging than water supply at the cathode. The strategy of water management in the anode should be different from that in the cathode. These findings can provide a further understanding of the role of GDLs in the water management of AEMFCs.


2021 ◽  
Vol 624 ◽  
pp. 119088
Author(s):  
Lv Li ◽  
Jiaao Wang ◽  
Manzoor Hussain ◽  
Lingling Ma ◽  
Naeem Akhtar Qaisrani ◽  
...  

Author(s):  
Yoo Sei Park ◽  
Jooyoung Lee ◽  
Myeong-Je Jang ◽  
Juchan Yang ◽  
Jae Hoon Jeong ◽  
...  

Seawater electrolysis is a promising technology for the production of hydrogen energy and seawater desalination. To produce hydrogen energy through seawater electrolysis, highly active electrocatalysts for the oxygen evolution reaction...


2021 ◽  
Vol 22 (3) ◽  
pp. 1415
Author(s):  
Veronika Sarapulova ◽  
Natalia Pismenskaya ◽  
Valentina Titorova ◽  
Mikhail Sharafan ◽  
Yaoming Wang ◽  
...  

The interplay between the ion exchange capacity, water content and concentration dependences of conductivity, diffusion permeability, and counterion transport numbers (counterion permselectivity) of CJMA-3, CJMA-6 and CJMA-7 (Hefei Chemjoy Polymer Materials Co. Ltd., China) anion-exchange membranes (AEMs) is analyzed using the application of the microheterogeneous model to experimental data. The structure–properties relationship for these membranes is examined when they are bathed by NaCl and Na2SO4 solutions. These results are compared with the characteristics of the well-studied homogenous Neosepta AMX (ASTOM Corporation, Japan) and heterogeneous AMH-PES (Mega a.s., Czech Republic) anion-exchange membranes. It is found that the CJMA-6 membrane has the highest counterion permselectivity (chlorides, sulfates) among the CJMAED series membranes, very close to that of the AMX membrane. The CJMA-3 membrane has the transport characteristics close to the AMH-PES membrane. The CJMA-7 membrane has the lowest exchange capacity and the highest volume fraction of the intergel spaces filled with an equilibrium electroneutral solution. These properties predetermine the lowest counterion transport number in CJMA-7 among other investigated AEMs, which nevertheless does not fall below 0.87 even in 1.0 eq L−1 solutions of NaCl or Na2SO4. One of the reasons for the decrease in the permselectivity of CJMAED membranes is the extended macropores, which are localized at the ion-exchange material/reinforcing cloth boundaries. In relatively concentrated solutions, the electric current prefers to pass through these well-conductive but nonselective macropores rather than the highly selective but low-conductive elements of the gel phase. It is shown that the counterion permselectivity of the CJMA-7 membrane can be significantly improved by coating its surface with a dense homogeneous ion-exchange film.


Sign in / Sign up

Export Citation Format

Share Document