scholarly journals TINGKAT KEKAKUAN PADA BETON BERTULANG MENGGUNAKAN APLIKASI RESPONSE-2000

2019 ◽  
Vol 3 (1) ◽  
pp. 7
Author(s):  
Fanny Monika ◽  
Hakas Prayuda ◽  
Al Fajir M Sarita

<p class="Abstract"><em>The behavior of precast concrete beams can be seen in the magnitude of the value of maximum load, deflection, moment and curvature. To facilitate analyzing these parameters using the Response-2000 software. The software is used to analyze beams with evenly distributed loads. The output of the application is in the form of deflection values, maximum load, and moment of curvature. This research was carried out by varying the dimensions of the beam and the position of the flexural reinforcement with a span length of 10 m. BU3 beam with a height of 1000 mm, width 150 mm, upper wing height 160 mm, lower wing height 150 mm upper wing width 300 mm and lower wing height 450 mm has a deflection of at least -95,248 mm and BU6 beam with a height of 1080 mm, width 152 mm, wing height 100 mm, wing height 130 mm, wingspan 381 mm and wing width 508 mm having a deflection of at most -114,471 mm. BU2 beam with a height1000 mm, width 150 mm, upper wing height 240 mm, wing height 150 mm, wingspan 300 mm and wingspan 450 mm has the smallest maximum load 81,265 kN/m and BU6 beam has maximum load 93,224 kN/m. BU2 beam has the smallest nominal moment of 1821,036 kNm and BU6 beam has the largest nominal moment value of 2093,920 kNm</em></p>

2018 ◽  
Vol 7 (1) ◽  
pp. 126
Author(s):  
Latha M S ◽  
Revanasiddappa M ◽  
Naveen Kumar B M

An experimental investigation was carried out to study shear carrying capacity and ultimate flexural moment of reinforced cement concrete beam. Two series of simply supported beams were prepared by varying diameter and spacing of shear and flexural reinforcement. Beams of cross section 230 mm X 300 mm and length of 2000 mm. During testing, maximum load, first crack load, deflection of beams were recorded. Test results indicated that decreasing shear spacing and decreasing its diameter resulted in decrease in deflection of beam and increase in bending moment and shear force of beam.


PCI Journal ◽  
2016 ◽  
Vol 61 (1) ◽  
pp. 29-38 ◽  
Author(s):  
Amirpasha Peyvandi ◽  
Iman Harsini ◽  
Libya Ahmed Sbia ◽  
Ranjith Weerasiri Rankothge ◽  
Saqib Ul Abideen ◽  
...  

2019 ◽  
Vol 9 (3) ◽  
pp. 4213-4217 ◽  
Author(s):  
A. H. Buller ◽  
M. Oad ◽  
B. A. Memon ◽  
S. Sohu

In this article, the effect of prolonged fire (24-hour duration) on reinforced concrete beams made with recycled aggregates from demolished concrete was experimentally investigated. Demolished concrete was used recycled coarse aggregates in equal proportion with natural coarse aggregates. Normal and rich mix concrete with water-cement ratio equal to 0.54 were used. As a control specimen, beams with all-natural aggregates were also cast to compare with the results of the proposed beams. All beams were cured for 28 days and exposed to fire at 1000°C in an oven for 24 hours. After the elapse of this fire period, the beams were allowed to air cool, followed by testing till failure in a universal load testing machine. Comparison of the test results shows that rich mix concrete beams more reduction in flexural strength, more increase in maximum load carrying capacity and deflection than normal mix beams. The maximum reduction in flexural strength was 32.41% for beams cast with 50% RCA and rich mix. Although the fire duration used in this study is rare, yet the outcome provides guidelines for taking proper decisions for retrofitting/strengthening of the fire affected structure before putting it back in service.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Ji-Hun Kim ◽  
Won-Kee Hong ◽  
Hee-Cheul Kim ◽  
Seong-Kyum Kim

This study aims to evaluate flexural strength based on the inelastic neutral axis calculated from all stress states of the proposed precast composite columns with hybrid beam-column joints, which facilitate the erection of concrete precast frames in a similar manner to that used for steel frames. It was also shown analytically that hybrid joints with headed studs contribute significantly to the flexural moment capacity and effectively increase the flexural structural performance of precast composite columns. The strain compatibility-based analytical results were compared with test data, showing results with an error of less than 8% at the critical section for the maximum load limit state of specimens. It is observed that the strength contributed by steel sections and headed studs increased by 30% and 35% at the yield limit state and maximum load limit, respectively, reducing the dependence on rebars. The total contribution of the headed studs was as large as 12.2% (average of the two layers of headed studs) at the maximum load limit state, whereas the strength provided by the tensile rebars decreased from 90.5% to 63.9% for the specimen with headed studs at the maximum load limit state.


2013 ◽  
Vol 639-640 ◽  
pp. 145-148 ◽  
Author(s):  
Yan Dong Jia ◽  
Ying Kai Guo ◽  
Zhi Ping Sun ◽  
Xin Zhao

The recycled aggregate is dealt with in three ways, the first way is to keep the recycled aggregate intact; the second way is to wrap the recycled aggregate in cement slurry of Water-cement ratio 0.55 for 30 minutes, and then place it at room temperature for 7 days; the third way is to immerse the recycled aggregate in water for 24 hours. Three kinds of different recycled aggregate is separately used for mixing of recycled concrete. The strength and slump of recycled concrete with different recycled coarse aggregate contents are tested. Experiments show that the recycled concrete produced by using the recycled aggregate immersed in water and selecting a suitable mix has the higher strength and slump,which can be industrialized. And then, the recycled concrete with 40% recycled coarse aggregate contents is used in the steel-reinforced recycled concrete beams, which are tested, the failure process of steel-reinforced recycled concrete beams,section strains and maximum load are acquired. Research shows the steel-reinforced recycled concrete beams conform to plane hypothesis before the load reachs 80% the limit load, the flexural bearing capacity of the steel-reinforced recycled concrete beams can meet the demand of Technichal Specification of Steel-Reinforced Concrete Structures. The use of recycled concrete in the composite structures is proposed.


2010 ◽  
Vol 32 (9) ◽  
pp. 2940-2949 ◽  
Author(s):  
Keun-Hyeok Yang ◽  
Myoung-Ho Oh ◽  
Myeong-Han Kim ◽  
Ho-Chan Lee

2012 ◽  
Vol 587 ◽  
pp. 36-41 ◽  
Author(s):  
S.F.A. Rafeeqi ◽  
S.U. Khan ◽  
N.S. Zafar ◽  
T. Ayub

In this paper, behaviour of nine (09) RC beams (including two control beams) after unbonding and exposing flexural reinforcement has been studied which were intentionally designed and detailed to observe flexural and shear failure. Beams have been divided into three groups based on failure mode and unbounded and exposed reinforcement. Beams have been tested under two-point loading up to failure. Experimental results are compared in terms of beam behaviour with respect to flexural capacity and failure mode which revealed that the exposed reinforcement does not altered flexural capacity significantly and unbondedness positively influences shear strength; however, serviceability performance of beams with unbonded and exposed reinforcement is less.


2014 ◽  
Vol 601 ◽  
pp. 203-206 ◽  
Author(s):  
Lluís Gil ◽  
Christian Escrig ◽  
Ernest Bernat-Maso

This work presents a method of strengthening concrete structures based on textiles of high strength and mortars. The combination of textiles and mortars produces a new composite material with cementitious matrix. This material can be used for the reinforcement of concrete beams under bending loads. We tested several combinations of fibers: glass, Poliparafenil Benzobisoxazol (PBO), steel and carbon fibers with mortar and we used them to reinforce precast concrete beams. All the specimens were tested with a four-point load test. We discuss the performance of the specimens and we compare the ultimate results with the formulae from FRP codes.


Sign in / Sign up

Export Citation Format

Share Document