scholarly journals Effect of Partial Replacement of Hydroxypropyl Methylcellulose Nanofibers of Portland Cement on the Corrosion Behavior of Reinforced Concrete Structures

Author(s):  
Bing Gao ◽  
Author(s):  
M. Omrane ◽  
A.S. Benosman ◽  
M. Mouli ◽  
Y. Senhadji

This paper presents a study of the resistance to chloride penetration of blended Portland cement mortar containing thermoplastic waste polymer polyethylene terephthalate (TWPET). Composite TWPET-mortars are often presented as the materials of the future in reason of their potential for innovation and advantages that offer. In fact, the use of TWPET percentages as a cement substitution reduces energy costs; address problems related to environmental pollution by CO2 emissions and repairs various reinforced concrete structures. Blended Portland cement (CPJ) is partially replaced with TWPET at the amounts of 2%, 4% and 6% by weight of cementitious materials. Chloride penetration depth of full and partial immersions in 3% NaCl solution, rapid chloride permeability test (RCPT) after 28, 90 and 120 days, sorptivity, leaching test and flexural strength of thermoplastic-mortar composites (TMCs) were determined. Test results reveal that the resistance to chloride penetration of TMCs improves substantially with partial replacement of CPJ with TWPET and without significantly affecting the flexural strength in tap water. The chemical resistance is higher with an increase in the replacement level. So, sorptivity, the chloride ion penetration depth, apparent chloride ion diffusion coefficient, the total charge passed in coulombs and leached depth measurements of the TMCs are much smaller than those of reference mortar. The formations which appear such as different calcium salts were determined by X-ray diffraction. These results take into account the use of waste plastics in the manufacture of mortars modified which can be both recommended for preventing the chloride-induced corrosion of the steel in various reinforced concrete structures and participate greatly in the environment preservation.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
G. R. Vijay Shankar ◽  
D. Suji

Recent earthquakes have demonstrated that most of the reinforced concrete structures were severely damaged; the beam-column joints, being the lateral and vertical load resisting members in reinforced concrete structures, are particularly vulnerable to failures during earthquakes. The existing reinforced concrete beam-column joints are not designed as per code IS13920:1993. Investigation of high performance concrete (HPC) joints with conventional concrete (CC) joints (exterior beam-column) was performed by comparing various reinforcement detailing schemes. Ten specimens were considered in this investigation and the results were compared: four specimens with CC (with and without seismic detailing), four specimens with HPC (with and without seismic detailing), and two specimens with HPC at confinement joint. The test was conducted for lateral load displacement, hysteresis loop, load ratio, percent of initial stiffness versus displacement curve, total energy dissipation, strain in beam main bars, and crack pattern. The results reveal that HPC with seismic detailing will be better compared with other reinforcements details under cyclic loading and reverse cyclic loading.


2018 ◽  
Vol 765 ◽  
pp. 383-390
Author(s):  
Hadi Vafaeinejad ◽  
Mahdi Kioumarsi

The penetration of water and chloride ion into the concrete is of factors that cause rust and corrosion in rebars by reaching the existing reinforcement surface in reinforced concrete structures. In this study, effect of using Asphalt Plant Surplus Filler as a partial replacement of cement with replacement values of 0, 5, 10, 15 and 20% on permeability and electrical resistance of cement mortar were investigated with the aim of decreasing cement consumption. In order to determine the penetration of water, 10 cubic specimens with the size of 150 mm were made and tested. In order to determine chloride ion penetration, 20 cylindrical specimens with a length of 50 and a diameter of 100 mm were studied at the ages of 28 and 56 days. To test the electrical resistivity of cement mortar, 30 cubic specimens with the size of 100 mm were tested at the ages of 7, 28 and 56 days. According to the results of the experiments, adding filler to the cement mortar enhances the penetration of water and chloride ion. Electrical resistivity generally increases with the increase of specimen age. Furthermore, the filler increment indicates the reduction of electrical resistivity.


2017 ◽  
Vol 4 (2) ◽  
pp. 97-108 ◽  
Author(s):  
Mariana d’Orey Gaivão Portella Bragança ◽  
Kleber Franke Portella ◽  
Camila Marçal Gobi ◽  
Evandro de Mesquita Silva ◽  
Emerson Alberti

Currently, prefabricated reinforced concrete structures are widely used for the construction of buildings of various functional purposes. In this regard, has been developed SP 356.1325800.2017 "Frame Reinforced Concrete Prefabricated Structures of Multi-Storey Buildings. Design Rules", which establishes requirements for the calculation and design of precast reinforced concrete structures of frame buildings of heavy, fine-grained and lightweight structural concrete for buildings with a height of not more than 75 m. The structure of the set of rules consists of eight sections and one annex. The document reviewed covers the design of multi-story framed beam structural systems, the elements of which are connected in a spatial system with rigid (partially compliant) or hinged joints and concreting of the joints between the surfaces of the abutting precast elements. The classification of structural schemes of building frames, which according to the method of accommodation of horizontal loads are divided into bracing, rigid frame bracing and framework, is presented. The list of structural elements, such as foundations, columns, crossbars, ribbed and hollow floor slabs and coatings, stiffness elements and external enclosing structures is given; detailed instructions for their design are provided. The scope of the developed set of rules includes all natural and climatic zones of the Russian Federation, except seismic areas with 7 or more points, as well as permafrost zones.


Problems when calculating reinforced concrete structures based on the concrete deformation under compression diagram, which is presented both in Russian and foreign regulatory documents on the design of concrete and reinforced concrete structures are considered. The correctness of their compliance for all classes of concrete remains very approximate, especially a significant difference occurs when using Euronorm due to the different shape and sizes of the samples. At present, there are no methodical recommendations for determining the ultimate relative deformations of concrete under axial compression and the construction of curvilinear deformation diagrams, which leads to limited experimental data and, as a result, does not make it possible to enter more detailed ultimate strain values into domestic standards. The results of experimental studies to determine the ultimate relative deformations of concrete under compression for different classes of concrete, which allowed to make analytical dependences for the evaluation of the ultimate relative deformations and description of curvilinear deformation diagrams, are presented. The article discusses various options for using the deformation model to assess the stress-strain state of the structure, it is concluded that it is necessary to use not only the finite values of the ultimate deformations, but also their intermediate values. This requires reliable diagrams "s–e” for all classes of concrete. The difficulties of measuring deformations in concrete subjected to peak load, corresponding to the prismatic strength, as well as main cracks that appeared under conditions of long-term step loading are highlighted. Variants of more accurate measurements are proposed. Development and implementation of the new standard GOST "Concretes. Methods for determination of complete diagrams" on the basis of the developed method for obtaining complete diagrams of concrete deformation under compression for the evaluation of ultimate deformability of concrete under compression are necessary.


Sign in / Sign up

Export Citation Format

Share Document