Redundant Parallel Mechanism for Haptic Applications

2010 ◽  
Vol 4 (4) ◽  
pp. 338-345 ◽  
Author(s):  
Jumpei Arata ◽  
◽  
Hideo Fujimoto

With haptic devices becoming increasingly common in both industrial field and consumer use, parallel mechanisms have been widely introduced for their high rigidity, output, accuracy and high backdrivability due to their multi-legged structure and fixed base actuators. In general parallel mechanism, redundancy enlarges the working area and avoids singularity. The redundant parallel mechanism we present introduces these advantages into haptic applications. Introducing this mechanism into a multiple degrees-of-freedom (DOF) structure realizes a wide range of working areas in rotation. The redundant parallel mechanism implemented in translational force display device, and multi-DOF force display device demonstrate the advantages of the redundant parallel mechanism in haptic applications. Following an overview, we introduce the prototype implementation and evaluation of these devices and discuss the effectiveness of the redundant parallel mechanism in haptic applications.

2021 ◽  
pp. 1-63
Author(s):  
Jin Lixing ◽  
Duan Xingguang ◽  
Li Changsheng ◽  
Shi Qingxin ◽  
Wen Hao ◽  
...  

Abstract This paper presents a novel parallel architecture with seven active degrees of freedom (DOFs) for general-purpose haptic devices. The prime features of the proposed mechanism are partial decoupling, large dexterous working area, and fixed actuators. The detailed processes of design, modeling, and optimization are introduced and the performance is simulated. After that, a mechanical prototype is fabricated and tested. Results of the simulations and experiments reveal that the proposed mechanism possesses excellent performances on motion flexibility and force feedback. This paper aims to provide a remarkable solution of the general-purpose haptic device for teleoperation systems with uncertain mission in complex applications.


Author(s):  
ChiHyo Kim ◽  
KunWoo Park ◽  
TaeSung Kim ◽  
MinKi Lee

This paper designs a four legged parallel mechanism to improve the dexterity of three layered parallel walking robot. Topology design is conducted for a leg mechanism composed of four legs, base and ground, which constitute a redundant parallel mechanism. This mechanism is subdivided into four sub-mechanism composed of three legs. A motor vector is adopted to determine the 6×8 Jacobian of the redundant parallel mechanism and the 6×6 Jacobian of the sub-mechanisms, respectively. The condition number of the Jacobian matrix is used as an index to measure a dexterity. We analyze the condition numbers of the Jacobian over the positional and orientational walking space. The analytical results show that a sub-mechanism has lots of singularities within workspace but they are removed by a redundant parallel mechanism improving the dexterity. This paper presents a parallel typed walking robot to enlarge walking space and stability region. Seven types of three layered walking robots are designed by inserting an intermediate mechanism between the upper and the lower legged parallel mechanisms. They provide various types of gaits to walk rough terrain and climb over a wall with small degrees of freedom.


Robotica ◽  
2019 ◽  
Vol 38 (7) ◽  
pp. 1155-1175
Author(s):  
Fei Liu ◽  
Angel Ricardo Licona ◽  
Arnaud Lelevé ◽  
Damien Eberard ◽  
Minh Tu Pham ◽  
...  

SUMMARYThis paper introduces a dual-user training system whose design is based on an energetic approach. This kind of system is useful for supervised hands-on training where a trainer interacts with a trainee through two haptic devices, in order to practice on a manual task performed on a virtual or teleoperated robot (e.g., for an Minimally Invasive Surgery (MIS) task in a surgical context). This paper details the proof of stability of an Energy Shared Control (ESC) architecture we previously introduced for one degree of freedom (d.o.f.) devices. An extension to multiple degrees of freedom is proposed, along with an enhanced version of the Adaptive Authority Adjustment function. Experiments are carried out with 3 d.o.f. haptic devices in free motion as well as in contact contexts in order to show the relevance of this architecture.


Robotics ◽  
2019 ◽  
Vol 8 (3) ◽  
pp. 66
Author(s):  
Maurizio Ruggiu ◽  
Xianwen Kong

This paper deals with the reconfiguration analysis of a 3-DOF (degrees-of-freedom) parallel manipulator (PM) which belongs to the cylindrical parallel mechanisms family. The PM is composed of a base and a moving platform shaped as equilateral triangles connected by three serial kinematic chains (legs). Two legs are composed of two universal (U) joints connected by a prismatic (P) joint. The third leg is composed of a revolute (R) joint connected to the base, a prismatic joint and universal joint in sequence. A set of constraint equations of the 1-RPU−2-UPU PM is derived and solved in terms of the Euler parameter quaternion (a.k.a. Euler-Rodrigues quaternion) representing the orientation of the moving platform and of the Cartesian coordinates of the reference point on the moving platform. It is found that the PM may undergo either the 3-DOF PPR or the 3-DOF planar operation mode only when the base and the moving platform are identical. The transition configuration between the operation modes is also identified.


2013 ◽  
Vol 456 ◽  
pp. 146-150
Author(s):  
Zhi Jiang Xie ◽  
Jun Zhang ◽  
Xiao Bo Liu

This paper designed a kind of parallel mechanism with three degrees of freedom, the freedom and movement types of the robot are analyzed in detail, the parallel mechanisms Kinematics positive and inverse solutions are derived through using the vector method. And at last its workspace is analyzed and studied systematically.


Author(s):  
S J Zhang ◽  
D J Sanger ◽  
D Howard

A parallel mechanism is one whose links and joints form two or more serially connected chains which join the fixed base and the end effector The mechanism of a multi-legged walking machine can be considered as a parallel mechanism whose base is not fixed and whose configuration changes during different phases of its gait. This paper presents methods for analysing the mechanics of parallel mechanisms and walking machines using vector and screw algebra Firstly, displacement analysis is covered; this includes general methods for deriving the position vector of any joint in any leg and for calculating the active joint displacements in any leg. Secondly, velocity analysis is covered which tackles the problem of calculating active joint velocities given the velocity, position and the orientation of the body and the positions of the feet. Thirdly, the static analysis of these classes of mechanisms using the principle of virtual work and screw algebra is given. Expressions are derived for the actuator forces and torques required to balance a given end effector (or body) wrench and, in the case of a walking machine, the ground reactions at the feet. Numerical examples are given to demonstrate the application of these methods.


2021 ◽  
Vol 12 (2) ◽  
pp. 983-995
Author(s):  
Shihua Li ◽  
Yajie Zhou ◽  
Yanxia Shan ◽  
Shuang Chen ◽  
Jinhan Han

Abstract. In the fields of electronic packaging, micromanipulation, scanning, and two translational (2T) mechanisms are required, especially with high stiffness, for a large workspace, with good driving stability, and other occasions. Redundant actuators are required to improve the performance of the 2T compliant parallel mechanism. The novelty of the work is to propose a new method for the type synthesis of a 2T redundant actuated compliant parallel mechanism based on the freedom and constraint topology (FACT) approach and the atlas approach. The synthesis conditions are given, and the synthesis process is formulated. With this method, new 2T redundant actuated compliant parallel mechanisms are synthesized. Some new mechanisms have been synthesized, which enriches the compliant parallel mechanism configurations. Based on the atlas method, the synthesized mechanism is analyzed. The results verify the correctness and effective of the synthesis method. The method is also suitable for a type of synthesis of redundant actuated compliant parallel mechanisms with 3, 4, 5, and 6 degrees of freedom (DOF), respectively.


Author(s):  
Ying Zhang ◽  
Xiaodong Guo ◽  
Shijia Yu

A novel 4-DOF (degrees of freedom) multi-dimensional vibration isolation platform (MDVIP) based on 4-UPU (U denotes universal joint, P denotes prismatic joint) parallel mechanism is put forward for vibration isolation of the sensitive devices. It consists of 4 limbs and each limb has two universal joints and a module of spring damper. The kinematic model and vibration model of the proposed MDVIP are established and analyzed. The main dimensions of the MDVIP and the parameters of the spring damper module are designed by optimization method to meet various design requirements and constraints. Both the virtual prototype and physical prototype of the MDVIP are built to testify the vibration isolation performance. The results of numerical calculation, simulation and experimental studies based on vibration response analysis show that the proposed MDVIP can isolate at least 78% vibration from the fixed base in three axial directions and 64% vibration in the direction around the Z-axis, and thus may attenuate the disturbances to the items on the moving platform to a large extent.


2019 ◽  
Vol 43 (2) ◽  
pp. 263-271 ◽  
Author(s):  
Yundou Xu ◽  
Bei Wang ◽  
Zhifeng Wang ◽  
Yun Zhao ◽  
Wenlan Liu ◽  
...  

Based on the relationship between constraint wrenches and rotational axes, the principle of full decoupling of two rotational degrees of freedom (DOFs) for a two-rotation and one-translation (2R1T) parallel mechanism and two-rotation (2R) parallel mechanism with three supporting branches is systematically analyzed. Two conditions for full decoupling of two rotational DOFs of such mechanisms are obtained. The relationship between the two rotational axes of the parallel mechanisms is classified into two cases: intersecting and different. Next, based on the two conditions, type synthesis of the 2R1T and 2R parallel mechanisms with fully decoupled two rotational DOFs is carried out. A series of novel 2R1T and 2R parallel mechanisms with fully decoupled two rotational DOFs are obtained, such as RPU–UPR–RPR. Several of these mechanisms contain only eight single-DOF passive joints, one fewer than in existing mechanisms of this type, and thus have broad applications.


2004 ◽  
Vol 126 (1) ◽  
pp. 79-82 ◽  
Author(s):  
Q. C. Li ◽  
Z. Huang

Mobility analysis of a novel 3-5R parallel mechanism family whose limb consists of a 2R and a 3R parallel subchain is performed by the aid of screw theory. A mobility criterion applicable to such 3-leg parallel mechanisms in which each kinematic chain contains five kinematic pairs is proposed. It is shown that under different structural conditions, the 3-5R parallel mechanism can have 3, 4, or 5 DOF (degrees of freedom). The structural conditions that guarantee the full-cycle mobility are analyzed. The analysis and the method presented in this paper will be helpful in using such a 3-5R parallel mechanism family and introduce new insights into the mobility analysis of parallel mechanisms.


Sign in / Sign up

Export Citation Format

Share Document