Characteristics of Ti-Ni-Zr Thin Film Metallic Glasses / Thin Film Shape Memory Alloys for Micro Actuators with Three-Dimensional Structures

2015 ◽  
Vol 9 (6) ◽  
pp. 662-667 ◽  
Author(s):  
Junpei Sakurai ◽  
◽  
Seiichi Hata

In this paper, we investigate the characteristics of Ti-Ni-Zr thin film metallic glasses (TFMGs)/ shape memory alloys (SMAs) for microelectromechanical systems (MEMS) applications with three-dimensional structures. The amorphous Ti-Ni-Zr thin films having a Ni content of more than 50 at.% and Zr content of more than 11 at.% undergo glass transitions and are TFMGs. The Ti39Ni50Zr11TFMG has the lowest glass transition temperatureTgof 703 K and a wide supercooled liquid region ΔTof 57 K. Moreover, it has high thermal stability atTg. However, the apparent viscosity of the Ti39Ni50Zr11is higher than those of other Ti-Ni-Zr TFMGs. Moreover, the Ti-Ni-Zr TFMG exhibits higher viscosity than conventional TFMGs because the alloy composition of Ti-Ni-Zr TFMGs/SMAs is far from the eutectic point.

Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 929
Author(s):  
Dandan Liang ◽  
Jo-Chi Tseng ◽  
Xiaodi Liu ◽  
Yuanfei Cai ◽  
Gang Xu ◽  
...  

This study investigated the structural heterogeneity, mechanical property, electrochemical behavior, and passive film characteristics of Fe–Cr–Mo–W–C–B–Y metallic glasses (MGs), which were modified through annealing at different temperatures. Results showed that annealing MGs below the glass transition temperature enhanced corrosion resistance in HCl solution owing to a highly protective passive film formed, originating from the decreased free volume and the shrinkage of the first coordination shell, which was found by pair distribution function analysis. In contrast, the enlarged first coordination shell and nanoscale crystal-like clusters were identified for MGs annealed in the supercooled liquid region, which led to a destabilized passive film and thereby deteriorated corrosion resistance. This finding reveals the crucial role of structural heterogeneity in tuning the corrosion performance of MGs.


2008 ◽  
Vol 498 (1-2) ◽  
pp. 464-467 ◽  
Author(s):  
K.Q. Qiu ◽  
J. Pang ◽  
Y.L. Ren ◽  
H.B. Zhang ◽  
C.L. Ma ◽  
...  

2009 ◽  
Vol 23 (06n07) ◽  
pp. 1294-1299 ◽  
Author(s):  
YONGLI CHEN ◽  
AIMIN WANG ◽  
HAIFENG ZHANG ◽  
ZHUANGQI HU

A new kind of composite with a bi -continuous structure was produced by pressure infiltrating melt Zr 41.2 Ti 13.8 Cu 12.5 Ni 10 Be 22.5 into porous SiC which was made by powder metallurgy. Microstructure investigations of the composite show that the melt alloy was fully infiltrated into the voids of porous SiC and quenched into amorphous state. Both the amorphous alloy and the porous SiC exhibit a three-dimensional interconnected net structure. The study of thermal properties reveals that the addition of porous SiC reduces the width of supercooled liquid region of the composite. The bi -continuous composite presents 2% plastic strain and ultimate strength of 1250MPa.


2004 ◽  
Vol 19 (2) ◽  
pp. 427-428 ◽  
Author(s):  
Z.P. Lu ◽  
C.T. Liu

A new Mg-based bulk amorphous alloy (i.e., Mg65Cu25Gd10) has successfully been developed by Men and Kim [H. Men and D.H. Kim, J. Mater. Res. 18, 1502 (2003)]. They showed that this alloy exhibits significantly improved glass-forming ability (GFA) in comparison with Mg65Cu25Y10 alloy. However, this improved GFA cannot be indicated by the supercooled liquid region ΔT and the reduced glass-transition temperature Trg. As shown in the current comment, the new parameter γ, Tx/(Tg + Tl) defined in our recent papers [Z.P. Lu and C.T. Liu, Acta Mater. 50, 3501 (2002); Z.P. Lu and C.T. Liu, Phys. Rev. Lett. 91, 115505 (2003)] can well gauge GFA for bulk metallic glasses, including the current Mg-based alloys.


Sign in / Sign up

Export Citation Format

Share Document