Three-dimensional Micro-forming Process of Thin Film Metallic Glass in the Supercooled Liquid Region

Author(s):  
Seiichi Hata ◽  
Yongdong Liu ◽  
Tomokazu Kato ◽  
Akira Shimokohbe
2007 ◽  
Vol 539-543 ◽  
pp. 2129-2134
Author(s):  
Young Sang Na ◽  
S.G. Kang ◽  
K.Y. Park ◽  
Jong Hoon Lee

Micro-forming is considered to be a suited technology to manufacture very small metallic parts (several μm~mm). Zr-based bulk metallic glass, Zr62Cu17Ni13Al8, has been expected to be a promising metallic material for micro-forming process due to their isotropy, low flow stress in a wide supercooled liquid region and good stability of amorphous matrix. Therefore, one can expect that micro-forming of Zr62Cu17Ni13Al8 might be feasible at a relatively low stress in the supercooled liquid state without any crystallization during hot deformation. In this study, micro-formability of Zr62Cu17Ni13Al8 bulk metallic glass was investigated for micro-forging of U-shape pattern. Microformability was estimated by comparing Rf values (=Af/Ag), where Ag is corss-sectional area of U groove, and Af the filled area by material. Micro-forging process was also simulated and analyzed by applying the finite element method. The micro-formability of Zr62Cu17Ni13Al8 was increased with increasing load and time in the temperature range of the supercooled liquid state. In spite of the similar trend in the variations of Rf values, FEM simulation results showed much higher Rf values than the experimental Rf values. This disagreement was analyzed based on the stress overshoot phenomena of bulk metallic glasses in the supercooled liquid region. FEM simulation of the microstamping process was applicable for the optimization of micro-forming process by carefully interpreting the simulation results.


2015 ◽  
Vol 9 (6) ◽  
pp. 662-667 ◽  
Author(s):  
Junpei Sakurai ◽  
◽  
Seiichi Hata

In this paper, we investigate the characteristics of Ti-Ni-Zr thin film metallic glasses (TFMGs)/ shape memory alloys (SMAs) for microelectromechanical systems (MEMS) applications with three-dimensional structures. The amorphous Ti-Ni-Zr thin films having a Ni content of more than 50 at.% and Zr content of more than 11 at.% undergo glass transitions and are TFMGs. The Ti39Ni50Zr11TFMG has the lowest glass transition temperatureTgof 703 K and a wide supercooled liquid region ΔTof 57 K. Moreover, it has high thermal stability atTg. However, the apparent viscosity of the Ti39Ni50Zr11is higher than those of other Ti-Ni-Zr TFMGs. Moreover, the Ti-Ni-Zr TFMG exhibits higher viscosity than conventional TFMGs because the alloy composition of Ti-Ni-Zr TFMGs/SMAs is far from the eutectic point.


2015 ◽  
Vol 1088 ◽  
pp. 265-271 ◽  
Author(s):  
Wu Xiao ◽  
Jian Jun Li ◽  
Zhi Zhen Zheng ◽  
Jin Yang Li

Taking cup-shaped part (outer diameter D and wall thickness are chosen as 2.2 mm and 0.05 mm, respectively) as an example, the micro-back-extrusion forming process of a Zr55Cu30 Al10Ni5 bulk metallic glass (BMG) in its supercooled liquid region was studied by using finite-element analysis (FEM) and experiment. The effect of forming speed on the formability was analyzed based on the extrusion load, the rheological behavior of the material and the microstructure of the formed parts. It was found that while the forming speed is below than 4 μm/s, the extrusion load increases obviously with the increasing in forming speed, otherwise, the BMG will follow non-newtonian flow and the forming load is insensitive to the forming speed. The parts fabricated at 2 μm/s are obviously crystallized due to the long retention time of metallic glasses at high temperature, a higher forming speed is benefit to enhancing the formability if the BMG. On this basis, micro cup-shaped parts with only 0.05 mm in wall thickness are successfully extruded.


2005 ◽  
Vol 894 ◽  
Author(s):  
Ryusuke Yamauchi ◽  
Seiichi Hata ◽  
Junpei Sakurai ◽  
Akira Shimokohbe

AbstractIn order to optimize low electrical resistivity compositions of Pd-based thin film metallic glass (TFMG), Combinatorial arc plasma deposition (CAPD) was employed. A Pd-based continuous compositionally-graded thin film was deposited using CAPD in the experiments. To deposit the composition-grade of the Pd-rich thin film, the number of shots and the plasma strength were controlled. The deposited thin film was separated into 1,089 samples for measurements. The thickness, composition, phase and relative resistivity of these samples were measured respectively. And three amorphous CAPD samples exhibiting low relative resistivity were selected. To determine whether these were TFMG compositions, their compositions were reproduced on sputter-deposited samples and their Tg and Tx were measured. It was found that the sample of Pd81Cu5Si14 at.% showed the lowest absolute resistivity (60 μΩ·cm) and the largest temperature range of supercooled liquid region (SCLR) i.e., 60 K among all samples. The resistivity was 19% lower than conventional Pd-based TFMG and SCLR was two and half times as large. The tensile strength was higher than the conventional TFMG and the Young's modulus was lower than the conventional one.


Metals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 579
Author(s):  
Ting Shi ◽  
Lanping Huang ◽  
Song Li

Structural relaxation and nanomechanical behaviors of La65Al14Ni5Co5Cu9.2Ag1.8 bulk metallic glass (BMG) with a low glass transition temperature during annealing have been investigated by calorimetry and nanoindentation measurement. The enthalpy release of this metallic glass is deduced by annealing near glass transition. When annealed below glass transition temperature for 5 min, the recovered enthalpy increases with annealing temperature and reaches the maximum value at 403 K. After annealed in supercooled liquid region, the recovered enthalpy obviously decreases. For a given annealing at 393 K, the relaxation behaviors of La-based BMG can be well described by the Kohlrausch-Williams-Watts (KWW) function. The hardness, Young’s modulus, and serrated flow are sensitive to structural relaxation of this metallic glass, which can be well explained by the theory of solid-like region and liquid-like region. The decrease of ductility and the enhancement of homogeneity can be ascribed to the transformation from liquid-like region into solid-like region and the reduction of the shear transition zone (STZ).


2009 ◽  
Vol 23 (06n07) ◽  
pp. 1294-1299 ◽  
Author(s):  
YONGLI CHEN ◽  
AIMIN WANG ◽  
HAIFENG ZHANG ◽  
ZHUANGQI HU

A new kind of composite with a bi -continuous structure was produced by pressure infiltrating melt Zr 41.2 Ti 13.8 Cu 12.5 Ni 10 Be 22.5 into porous SiC which was made by powder metallurgy. Microstructure investigations of the composite show that the melt alloy was fully infiltrated into the voids of porous SiC and quenched into amorphous state. Both the amorphous alloy and the porous SiC exhibit a three-dimensional interconnected net structure. The study of thermal properties reveals that the addition of porous SiC reduces the width of supercooled liquid region of the composite. The bi -continuous composite presents 2% plastic strain and ultimate strength of 1250MPa.


1999 ◽  
Vol 601 ◽  
Author(s):  
Y. Kawamura ◽  
A. Inoue

AbstractWe have investigated the flow stress and elongation of superplastic deformation in a La55Al25Ni20 (at%) metallic glass that has a wide supercooled liquid region of 72 K before crystallization. The superplasticity that appeared in the supercooled liquid region was generated by the Newtonian viscous flow that exhibits the m value of unity. The elongation to failure was restricted by the transition of the Newtonian flow to non-Newtonian one and the crystallization during deformation. We succeeded in establishing the constitutive formulation of the flow stress in the supercooled liquid region. Its formulation was expressed very well by a stretched exponential function σflow=Dε exp(H*/RT) [1-exp(E/{ε exp(H**/RT)}0.82)]. Formulations describing the elongation to failure in constant-strain-rate and constant-crosshead velocity tests were, moreover, established. It was found from the simulation that the maximum elongation in the constant-strain-rate test reached more than 106% which was two orders of magnitude larger than that in the constant-crosshead-velocity test.


Sign in / Sign up

Export Citation Format

Share Document