Network Parameter Setting for Reinforcement Learning Approaches Using Neural Networks

Author(s):  
Kazuaki Yamada ◽  

Reinforcement learning approaches are attracting attention as a technique for constructing a trial-anderror mapping function between sensors and motors of an autonomous mobile robot. Conventional reinforcement learning approaches use a look-up table to express the mapping function between grid state and grid action spaces. The grid size greatly adversely affects the learning performance of reinforcement learning algorithms. To avoid this, researchers have proposed reinforcement learning algorithms using neural networks to express the mapping function between continuous state space and action. A designer, however, must set the number of middle neurons and initial values of weight parameters appropriately to improve the approximate accuracy of neural networks. This paper proposes a new method that automatically sets the number ofmiddle neurons and initial values of weight parameters based on the dimension number of the sensor space. The feasibility of proposed method is demonstrated using an autonomous mobile robot navigation problem and is evaluated by comparing it with two types of Q-learning as follows: Q-learning using RBF networks and Q-learning using neural networks whose parameters are set by a designer.

2012 ◽  
Vol 151 ◽  
pp. 498-502
Author(s):  
Jin Xue Zhang ◽  
Hai Zhu Pan

This paper is concerned with Q-learning , a very popular algorithm for reinforcement learning ,for obstacle avoidance through neural networks. The principle tells that the focus always must be on both ecological nice tasks and behaviours when designing on robot. Many robot systems have used behavior-based systems since the 1980’s.In this paper, the Khepera robot is trained through the proposed algorithm of Q-learning using the neural networks for the task of obstacle avoidance. In experiments with real and simulated robots, the neural networks approach can be used to make it possible for Q-learning to handle changes in the environment.


2012 ◽  
Vol 24 (2) ◽  
pp. 330-339 ◽  
Author(s):  
Kazuaki Yamada ◽  

This paper proposes a new reinforcement learning algorithm that can learn, using neural networks and CMAC, a mapping function between highdimensional sensors and the motors of an autonomous robot. Conventional reinforcement learning algorithms require a lot of memory because they use lookup tables to describe high-dimensional mapping functions. Researchers have therefore tried to develop reinforcement learning algorithms that can learn the high-dimensional mapping functions. We apply the proposed method to an autonomous robot navigation problem and a multi-link robot arm reaching problem, and we evaluate the effectiveness of the method.


Author(s):  
Casi Setianingsih ◽  
Kusprasapta Mutijarsa ◽  
Muhammad Ary Murti

Autonomous robot adalah suatu robot yang mampu bekerja secara mandiri tanpa pengendalian langsung dari manusia. Robot bekerja berdasarkan sensor-sensor yang dimilikinya, mengambil keputusan sendiri untuk menyelesaikan misi dalam lingkungan kerjanya. Dalam dunia nyata, lingkungan kerja robot sangat dinamis, selalu berubah, dan tidak terstruktur. Membuat suatu model lingkungan yang tidak terstruktur sangat sulit. Memperoleh model matematik yang tepat dari lingkungan seperti ini hampir tidak mungkin dilakukan. Untuk membuat suatu autonomous mobile robots yang mampu bekerja pada lingkungan yang tidak terstruktur dan dinamis,diperlukansuatumetodatertentuyangadaptifdanmampubelajar. Berdasarkan permasalahan tersebut maka pada riset ini dirancang suatu autonomous mobile robot dengan arsitektur berbasis perilaku yang dapat belajar dan bekerja secara mandiri pada lingkungan yang tidak terstruktur, menggunakan metoda Reinforcement Learning. Tujuan metoda ini diterapkan agar robot mampu belajar dan beradaptasi terhadap lingkungan yang tidak terstruktur. Selanjutnya robot dikembangkan agar mampu menyelesaikan misi menemukan target pada posisi tertentu berdasarkan informasi yang diperoleh dari sensor sensor yang ada. Hasil simulasi menunjukan bahwa algoritma pembelajaran Reinforcement Learning berhasil diterapkan pada arsitektur kendali berbasis perilaku di autonomous mobile robot dengan akurasi sebesar 85,71%.


1997 ◽  
Vol 14 (4) ◽  
pp. 263-282 ◽  
Author(s):  
Jason A. Jan�t ◽  
Ricardo Gutierrez ◽  
Troy A. Chase ◽  
Mark W. White ◽  
John C. Sutton

Robotics ◽  
2010 ◽  
Author(s):  
H. Wicaksono ◽  
K. Anam ◽  
P. Hastono ◽  
I.A. Sulistijono ◽  
S. Kuswadi

Electronics ◽  
2019 ◽  
Vol 8 (2) ◽  
pp. 231 ◽  
Author(s):  
Panagiotis Kofinas ◽  
Anastasios I. Dounis

This paper proposes a hybrid Zeigler-Nichols (Z-N) fuzzy reinforcement learning MAS (Multi-Agent System) approach for online tuning of a Proportional Integral Derivative (PID) controller in order to control the flow rate of a desalination unit. The PID gains are set by the Z-N method and then are adapted online through the fuzzy Q-learning MAS. The fuzzy Q-learning is introduced in each agent in order to confront with the continuous state-action space. The global state of the MAS is defined by the value of the error and the derivative of error. The MAS consists of three agents and the output signal of each agent defines the percentage change of each gain. The increment or the reduction of each gain can be in the range of 0% to 100% of its initial value. The simulation results highlight the performance of the suggested hybrid control strategy through comparison with the conventional PID controller tuned by Z-N.


Sign in / Sign up

Export Citation Format

Share Document