Spatial-Temporal Assessment of Debris Flow Risk in the Ms8.0 Wenchuan Earthquake-Disturbed Area

2016 ◽  
Vol 11 (4) ◽  
pp. 720-731 ◽  
Author(s):  
Xin Yao ◽  
◽  
Lingjing Li ◽  

For 5 years (2009–2013) after the 2008 Ms8.0 Wenchuan earthquake, rainfall led to the transformation of unconsolidated co-seismic deposits into extensive and severe debris flows, causing significant loss of life and property. For debris flows in the earthquake-disturbed area, a few common concerns exist. What is their spatial-temporal distribution? What are the controlling factors? How much is the rainfall threshold for debris flows? What areas are more susceptible? Where suffered the most severe losses of life and property? Using debris flow characteristics, this study analyzes the relationships between seismic geological factors, geomorphologic factors, extreme rainfall, and debris flows in the 5 years following the earthquake, and draws the following conclusions. (1) There are regional differences in the rainfall threshold for generation of debris flows, and the annual maximum 72-hour accumulated rainfall for triggering a debris flow decreases from pre-seismic periods (135–325 mm) to post-seismic periods (75–160 mm) by 44.4–50.8% in study area. (2) Areas with high debris flow susceptibility and hazard are primarily controlled by seismic geological conditions. (3) The long-term risk of debris flows will fall to moderate, and the affected area will shrink to that around the seismogenic fault. The results of this study will help with meteorological early warning systems, deployment of disaster prevention and control projects, and reconstruction site selection in the post-seismic Longmen Mountain area.

2018 ◽  
Vol 18 (5) ◽  
pp. 1395-1409 ◽  
Author(s):  
Hua-Li Pan ◽  
Yuan-Jun Jiang ◽  
Jun Wang ◽  
Guo-Qiang Ou

Abstract. Debris flows are natural disasters that frequently occur in mountainous areas, usually accompanied by serious loss of lives and properties. One of the most commonly used approaches to mitigate the risk associated with debris flows is the implementation of early warning systems based on well-calibrated rainfall thresholds. However, many mountainous areas have little data regarding rainfall and hazards, especially in debris-flow-forming regions. Therefore, the traditional statistical analysis method that determines the empirical relationship between rainstorms and debris flow events cannot be effectively used to calculate reliable rainfall thresholds in these areas. After the severe Wenchuan earthquake, there were plenty of deposits deposited in the gullies, which resulted in several debris flow events. The triggering rainfall threshold has decreased obviously. To get a reliable and accurate rainfall threshold and improve the accuracy of debris flow early warning, this paper developed a quantitative method, which is suitable for debris flow triggering mechanisms in meizoseismal areas, to identify rainfall threshold for debris flow early warning in areas with a scarcity of data based on the initiation mechanism of hydraulic-driven debris flow. First, we studied the characteristics of the study area, including meteorology, hydrology, topography and physical characteristics of the loose solid materials. Then, the rainfall threshold was calculated by the initiation mechanism of the hydraulic debris flow. The comparison with other models and with alternate configurations demonstrates that the proposed rainfall threshold curve is a function of the antecedent precipitation index (API) and 1 h rainfall. To test the proposed method, we selected the Guojuanyan gully, a typical debris flow valley that during the 2008–2013 period experienced several debris flow events, located in the meizoseismal areas of the Wenchuan earthquake, as a case study. The comparison with other threshold models and configurations shows that the selected approach is the most promising starting point for further studies on debris flow early warning systems in areas with a scarcity of data.


2017 ◽  
Author(s):  
Hua-li Pan ◽  
Yuan-jun Jiang ◽  
Jun Wang ◽  
Guo-qiang Ou

Abstract. Debris flows are one of the natural disasters that frequently occur in mountain areas, usually accompanied by serious loss of lives and properties. One of the most used approaches to mitigate the risk associated to debris flows is the implementation of early warning systems based on well calibrated rainfall thresholds. However, many mountainous areas have little data regarding rainfall and hazards, especially in debris flow forming regions. Therefore, the traditional statistical analysis method that determines the empirical relationship between rainfall and debris flow events cannot be effectively used to calculate reliable rainfall thre-shold in these areas. To solve this problem, this paper developed a quantitative method to identify rainfall threshold for debris flow early warning in data-poor areas based on the initiation mechanism of hydraulic-driven debris flow. First, we studied the characteristics of the study area, including meteorology, hydrology, topography and physical characteristics of the loose solid materials. Then, the rainfall threshold was calculated by the initiation me-chanism of the hydraulic debris flow. The results show that the proposed rainfall threshold curve is a function of the antecedent precipitation index and 1-h rainfall. The function is a line with a negative slope. To test the proposed method, we selected the Guojuanyan gully, a typical debris flow valley that during the 2008–2013 period experienced several debris flow events and that is located in the meizoseismal areas of Wenchuan earthquake, as a case study. We compared the calculated threshold with observation data, showing that the accuracy of the method is satisfying and thus can be used for debris flow early warning in areas with scaricty of data.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Yonggang Ge ◽  
Jianqiang Zhang ◽  
Xiaojun Guo

After analysing the catastrophic debris flows on August 18, 2012, and on July 9, 2013, in Jushui River basin, An County, the Wenchuan Earthquake seriously striken areas, it was found that they were characterized by the clay soil content of 0.1~1.2%, the density of 1.68~2.03 t/m3, the discharges of 62.2 m3/s to 552.5 m3/s, and the sediment delivery modulus of 1.0~9.4 × 104 m3/km2. Due to intense rainstorm, many large debris flows produced hazard chain, involved in flash flood, debris flow, dammed lake, and outburst flood, and rose Jushui River channel about 1~4 m as well as amplified flood. The hazards and losses mainly originated from the burying and scouring of debris flows, flood inundating, and river channel rise. The prevention of debris flows is facing the intractable problems including potential hazard identification, overstandard debris flow control, control constructions destructing, and river channel rapid rise. Therefore, the prevention measures for the basin, including hazard identification and risk assessment, inhabitants relocating, monitoring and alarming network establishing, emergency plans founding, and river channel renovating, and the integrated control mode for watershed based on regulating the process of debris flow discharge, were recommended for mitigation.


2015 ◽  
Vol 15 (3) ◽  
pp. 587-602 ◽  
Author(s):  
M. Berenguer ◽  
D. Sempere-Torres ◽  
M. Hürlimann

Abstract. This work presents a technique for debris-flow (DF) forecasting able to be used in the framework of DF early warning systems at regional scale. The developed system is applied at subbasin scale and is based on the concepts of fuzzy logic to combine two ingredients: (i) DF subbasin susceptibility assessment based on geomorphological variables and (ii) the magnitude of the rainfall situation as depicted from radar rainfall estimates. The output of the developed technique is a three-class warning ("low", "moderate" or "high") in each subbasin when a new radar rainfall map is available. The developed technique has been applied in a domain in the eastern Pyrenees (Spain) from May to October 2010. The warning level stayed "low" during the entire period in 20% of the subbasins, while in the most susceptible subbasins the warning level was at least "moderate" for up to 10 days. Quantitative evaluation of the warning level was possible in a subbasin where debris flows were monitored during the analysis period. The technique was able to identify the three events observed in the catchment (one debris flow and two hyperconcentrated flow events) and produced no false alarm.


2012 ◽  
Vol 9 (11) ◽  
pp. 12797-12824 ◽  
Author(s):  
M. N. Papa ◽  
V. Medina ◽  
F. Ciervo ◽  
A. Bateman

Abstract. Real time assessment of debris flow hazard is fundamental for setting up warning systems that can mitigate its risk. A convenient method to assess the possible occurrence of a debris flow is the comparison of measured and forecasted rainfall with rainfall threshold curves (RTC). Empirical derivation of the RTC from the analysis of rainfall characteristics of past events is not possible when the database of observed debris flows is poor or when the environment changes with time. For landslides triggered debris flows, the above limitations may be overcome through the methodology here presented, based on the derivation of RTC from a physically based model. The critical RTC are derived from mathematical and numerical simulations based on the infinite-slope stability model in which land instability is governed by the increase in groundwater pressure due to rainfall. The effect of rainfall infiltration on landside occurrence is modelled trough a reduced form of the Richards equation. The simulations are performed in a virtual basin, representative of the studied basin, taking into account the uncertainties linked with the definition of the characteristics of the soil. A large number of calculations are performed combining different values of the rainfall characteristics (intensity and duration of event rainfall and intensity of antecedent rainfall). For each combination of rainfall characteristics, the percentage of the basin that is unstable is computed. The obtained database is opportunely elaborated to derive RTC curves. The methodology is implemented and tested on a small basin of the Amalfi Coast (South Italy).


2021 ◽  
Vol 21 (9) ◽  
pp. 2773-2789
Author(s):  
Jacob Hirschberg ◽  
Alexandre Badoux ◽  
Brian W. McArdell ◽  
Elena Leonarduzzi ◽  
Peter Molnar

Abstract. The prediction of debris flows is relevant because this type of natural hazard can pose a threat to humans and infrastructure. Debris-flow (and landslide) early warning systems often rely on rainfall intensity–duration (ID) thresholds. Multiple competing methods exist for the determination of such ID thresholds but have not been objectively and thoroughly compared at multiple scales, and a validation and uncertainty assessment is often missing in their formulation. As a consequence, updating, interpreting, generalizing and comparing rainfall thresholds is challenging. Using a 17-year record of rainfall and 67 debris flows in a Swiss Alpine catchment (Illgraben), we determined ID thresholds and associated uncertainties as a function of record duration. Furthermore, we compared two methods for rainfall definition based on linear regression and/or true-skill-statistic maximization. The main difference between these approaches and the well-known frequentist method is that non-triggering rainfall events were also considered for obtaining ID-threshold parameters. Depending on the method applied, the ID-threshold parameters and their uncertainties differed significantly. We found that 25 debris flows are sufficient to constrain uncertainties in ID-threshold parameters to ±30 % for our study site. We further demonstrated the change in predictive performance of the two methods if a regional landslide data set with a regional rainfall product was used instead of a local one with local rainfall measurements. Hence, an important finding is that the ideal method for ID-threshold determination depends on the available landslide and rainfall data sets. Furthermore, for the local data set we tested if the ID-threshold performance can be increased by considering other rainfall properties (e.g. antecedent rainfall, maximum intensity) in a multivariate statistical learning algorithm based on decision trees (random forest). The highest predictive power was reached when the peak 30 min rainfall intensity was added to the ID variables, while no improvement was achieved by considering antecedent rainfall for debris-flow predictions in Illgraben. Although the increase in predictive performance with the random forest model over the classical ID threshold was small, such a framework could be valuable for future studies if more predictors are available from measured or modelled data.


2021 ◽  
Author(s):  
Li Ning ◽  
Tang Chuan ◽  
Zhang Xianzheng ◽  
Chang Ming ◽  
Shu Zhile ◽  
...  

Abstract On August 20, 2019, at 2 a.m., a disastrous debris flow occurred in Chediguan gully in Yinxing town, China. The debris flow destroyed the drainage groove and the bridge at the exit of the gully. In addition, the debris flow temporarily blocked the Minjiang River during the flood peak, flooding the Taipingyi hydropower station 200 m upstream and leaving two plant workers missing. To further understand the activity of the debris flow after the Wenchuan earthquake, the characteristics of this debris flow event were studied. Eleven years after the Wenchuan earthquake, a disastrous debris flow still occurred in the Chediguan catchment, causing more severe losses than those of earlier debris flows. In this paper, the formation mechanism and dynamic characteristics of this debris flow event are analysed based on a drone survey, high-definition remote sensing interpretations and other means. The catastrophic debris flow event indicates that debris flows in the Wenchuan earthquake area are still active. A large amount of dredging work in the main gully could effectively reduce the debris flow risk in the gully. In addition, it is also important to repair or rebuild damaged mitigation measures and to establish a real-time monitoring and early warning system for the high-risk gully.


2020 ◽  
Author(s):  
Erin Harvey ◽  
Xuanmei Fan ◽  
Tristram Hales ◽  
Daniel Hobley ◽  
Jie Liu ◽  
...  

<p>Co-seismic landslides can mobilise up to 3 km<sup>3</sup> of loose sediment within minutes. However, the export rate of this sediment is largely unconstrained. For example, it is estimated that a decade after the 2008 Wenchuan earthquake at least 90% of the co-seismic sediment remains stored on the hillslope. Post-earthquake debris flows are the main conduit by which such hillslope debris reaches the fluvial network but the mechanics that govern the triggering and runout of such flows remain unclear and as such they appear to behave largely unpredictably.  Material grain size is a key control on both triggering and runout, since it affects both hydrological (e.g. water loss during flow; saturation state before triggering) and frictional properties of the system. However, our understanding of the role of grain size in the genesis and evolution of debris flows remains poorly explored, largely due to limitations in real field data. Existing estimates for landslide and debris flow deposit grain size distributions (GSDs) are currently limited by 1. inconsistency of applied methods; 2. the very poor sorting of these sediments; 3. inaccessibility, and 4. inherent intra-deposit variability in GSD. </p><p>Our research aims to better understand the role of grain size using an unprecedentedly detailed set of field-constrained GSDs across the post-seismic landslides and debris flows of the 2008 Wenchuan earthquake. Here we present data quantifying the grain size distribution across two debris flows using two different techniques. The two debris flows occurred in response to prolonged rainfall in August 2019 and mobilised co-seismic debris from the 2008 earthquake. In the field, we selected four to eight 1 m x 1 m x 0.5 m pits along the centre line of each debris flow at regular intervals and sieved the pit material into 8 cm, 4 cm, 2 cm and 1 cm fractions at 10 cm depth increments. Boulders >8 cm were measured and weighed individually. Smaller samples were then collected from the finer fraction (<1 cm) and sieved further in the laboratory. The coarse fraction was independently constrained from calibrated photogrammetry, and this was coupled to drone surveying to ensure the coarsest fraction (≥1 m) was correctly represented. This study presents a detailed estimate of post-earthquake debris flow GSDs with the overarching aim to better understand sediment transport and deposition from debris flows in the years following an earthquake.</p>


2020 ◽  
Author(s):  
Velio Coviello ◽  
Matteo Berti ◽  
Lorenzo Marchi ◽  
Francesco Comiti ◽  
Giulia Marchetti ◽  
...  

<p>The complete understanding of the mechanisms controlling debris-flow initiation is still an open challenge in landslide research. Most debris-flow models assume that motion suddenly begins when a large force imbalance is imposed by slope instabilities or the substrate saturation that causes the collapse of the channel sediment cover. In the real world, the initiation of debris flows usually results from the perturbation of the static force balance that retains sediment masses in steep channels. These perturbations are primarily generated by the increasing runoff and by the progressive erosion of the deposits. Therefore, great part of regional early warning systems for debris flows are based on critical rainfall thresholds. However, these systems are affected by large spatial-temporal uncertainties due to the inadequate number and distribution of rain gauges. In addition, rainfall analysis alone does not explain the dynamics of sediment fluxes at the catchment scale: short-term variations in the sediment sources strongly influence the triggering of debris flows, even in catchments characterized by unlimited sediment supply.</p><p>In this work, we present multi-parametric observations of debris flows at the headwaters of the Gadria catchment (eastern Italian Alps). In 2018, we installed a monitoring network composed of geophones, three soil moisture probes, one tensiometer and two rain-triggered videocameras in a 30-m wide steep channel located at about 2200 m a.s.l. Most sensors lie on the lateral ridges of this channel, except for the tensiometer and the soil moisture probes that are installed in the channel bed at different depths. This network recorded four flow events in two years, two of which occurred at night. Specifically, the debris flows that occurred on 21 July 2018 and 26 July 2019 produced remarkable geomorphic changes in the monitored channel, with up to 1-m deep erosion. For all events, we measured peak values of soil water content that are far from saturation (<0.25 at -20 cm, <0.15 at -40 cm, <0.1 at -60 cm). We derived the time of occurrence and the duration of these events from the analysis of the seismic signals. Combining these pieces of information with data gathered at the monitoring station located about 2 km downstream, we could determine the flow kinematics along the main channel.</p><p>These results, although still preliminary, show the relevance of a multi-parametric detection of debris-flow initiation processes and may have valuable implications for risk management. Alarm systems for debris flows are becoming more and more attractive due the continuous development of compact and low-cost distributed sensor networks. The main challenge for operational alarm systems is the short lead-time, which is few tens of seconds for closing a transportation route or tens of minutes for evacuating settlements. Lead-time would significantly increase installing a detection system in the upper part of a catchment, where the debris flow initiates. The combination of hydro-meteorological monitoring in the source areas and seismic detection of channelized flows may be a reliable approach for developing an integrated early warning - alarm system.</p>


Sign in / Sign up

Export Citation Format

Share Document